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Abstract

We propose a new approach of the image segmentation methods. This approach is based on a functional model composed
of 4ve elementary blocks called in an iterative process. Di6erent segmentation methods can be decomposed with such a
scheme and lead to elementary building blocks with uni4ed functionality and interfaces. We present the decompositions of
three segmentation methods and the implementation results, which illustrate the potential of the proposed model. This generic
model is a common framework, which makes segmentation techniques more readable and o6ers new perspectives for the
development, the comparison and the implementation of segmentation methods.
? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Image segmentation is the process of assigning pixels to
regions having common properties. It is one of the funda-
mental process in computer vision and pattern recognition
because further processing steps have to rely on the seg-
mentation results. Despite the numerous segmentation tech-
niques, image segmentation is still a subject of on-going
investigations and it cannot be conclusively stated that the
segmentation problem has been solved because of the appli-
cation’s diversity. As a consequence, the task of choosing
the best method for a speci4c application is still a diAcult
challenge. Several survey papers [1–3] cover the major
image segmentation techniques available. Most of the seg-
mentation techniques can be roughly categorized into two
approaches: Boundary-based methods and region-based
methods.

Basically, the 4rst approach is based on discontinuity and
tends to partition an image by detecting isolated points,
lines and edges according to abrupt changes of local proper-
ties. The regions are then deduced from their boundary. The
usual tools that are employed in boundary-based methods
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include local 4ltering approaches such as Canny edge de-
tector [4] or energy minimization like the active contour
model (i.e. snake model) [5] and balloon models [6]. The
algorithms from the second approach exploit the homogene-
ity of spatially dense information (e.g. intensity, color, tex-
ture properties, etc.) to produce the segmented image. It in-
cludes thresholding [7], clustering [8], region-growing [9],
region splitting [10] and merging [11]. Both types of ap-
proaches have their advantages, drawbacks and limitations.
To improve the segmentation results, a strategy consists in
combining these two approaches in order to obtain a robust
segmentation by exploiting the advantages of one method
to reduce the drawbacks of the second one. Di6erent frame-
works have been proposed [12,13]. In [14], Zhu develops a
unifying framework that combines the attractive geometrical
features of deformable models and the statistical techniques
of region growing. Germond et al. [15] propose to mix in
a cooperative framework several types of information and
knowledge provided and used by complementary individual
systems like a multi-agent system, a deformable model and
an edge detector. Other authors, like Geiger [16], propose an
approach based on mathematical models. This is an attempt
to unify di6erent methods of image segmentation under a
common framework based on the Bayesian theory.

Even when the goal of segmentation appears to be rela-
tively modest, a uni4ed approach is still not available today.
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Since a common mathematical framework seems to be un-
achievable, we propose to de4ne a functional model of the
segmentation methods. This model is a general framework
that integrates a maximum number of segmentation tech-
niques. It is implemented in a software tool which demon-
strates the practical validity of this approach. By o6ering a
uni4ed view of image segmentation, such a framework can
also be used further as a tool that could facilitate the struc-
tural comparison of methods and evaluate the original as-
pect of a segmentation method. Finally, it would be helpful
for software implementation and test of segmentation tech-
niques.

A preliminary overview of this model has been given in
Ref. [17] with a focus on its C++ implementation. In this
paper, we detail the functional model in Section 2. Section 3
deals with the decomposition through the functional model
of some existing image segmentation methods and gives
some experimental results to validate the proposed frame-
work. In Section 4, we present the programming paradigm
associated to the model. Section 5 describes and illustrates
the chaining of segmentation operators and its eAciency.

2. The functional model

2.1. Model overview

The core of our functional model (FM) is a segmentation
operator (SO) presented in Fig. 1. This SO is a functional
structure that represents the image segmentation process. It
is always composed of 4ve elementary blocks, which are
named Measure, Criterion, Control, Modi4cation and Stop.
The segmentation process is achieved through one or more
iterations of these blocks. Only one SO is generally suA-
cient to de4ne and build a “simple” segmentation method.
Complex methods, like co-operative ones [15], are repre-
sented by a composition of similar or di6erent segmentation
operators. This will be discussed in Section 5.
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Fig. 1. Overall structure of the functional model of image segmen-
tation.

2.2. Theory and description of the FM components

In this section, we describe the elementary blocks and
present the rules that must be applied to enforce the FM.

2.2.1. The Measure block
The feature calculation process is the initial task that

is required by the FM. The role of this block is to
create at each iteration k a set of M scalar measures
{Fk(i; n); i = 1::M; n = 1::N} for each region n among the
N regions of the image. It needs the original image and the
current segmented image (region map at iteration k, noted
RMk). Generally, these measures are related to the region
homogeneity and the boundary gradients, or the neighbor-
hood relationship between adjacent regions, or the edge
properties. The same measures can be used in di6erent seg-
mentation strategies. For example, the variance of a region
can be found in a thresholding method, a splitting one, or
an active contour one.

This block has two operating modes:

(1) A local mode, where the measures are evaluated at the
position (site) s which is speci4ed by the Modi4cation
block (see Section 2.2.4). Usually, in this mode the
measures are computed in a neighborhood of the point
s, and they take into account all the pixels belonging to
this neighborhood. For example, a local mean measure
is done by averaging the gray levels of all the pixels in-
side a square window of widthW centered at position s.

(2) A global mode, where the measures are evaluated on
the whole image for each region. For example, we
can compute the gray level variance of a region, the
surface, or a contour energy.

2.2.2. The Criterion block
Segmentation is the process of dividing up an image into

a set of regions which are uniform and homogeneous ac-
cording to some characteristic. This homogeneity is gener-
ally de4ned by a criterion. In the FM, the Criterion block
receives all the measures from the measure block and builds
a scalar criterion Ck(n)=f(Fk(i; n)) for each region n. This
homogeneity criterion is called energy, potential (: : :) de-
pending on the segmentation method context.

In our FM, the criterion Ck(n) is used to identify signi4-
cant changes in the segmentation results from one iteration
to the next one. We de4ne that it must decrease when the
segmentation map approaches “a good result”.

One of the most common criterions is an additive combi-
nation of measures weighted by hyper parameters wk(i; n).
These hyper parameters can be 4xed or evolve through the
iterations k. This criterion is given by the following equation:

Ck(n) =
M∑
i=1

wk(i; n)Fk(i; n); (1)

where n is the region number and i the measure number.
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Table 1
List of blocks obtained after several methods implementation

Block type (class) Functions

Measure 1. Gray level variance
2.Gray level mean
3.Area
4.Local deviation from mean
5.Clique energy
6.Mean square error
7.Local distance
8.Point displacement

Criterion 1. Additive combination
2.Inverse
3.Embedded
4.Magnitude

Control 1. Thresholding
2.Derivative
3.Maximum
4.Minimum
5.Linear

Modi4cation 1. Orthogonal splitting
2.Fixed control point displacement
3.Pixel labeling
4.Histogram thresholding
5.Merging
6.Dilation
7.Contraction
8.Adaptive control point displacement

Criterions can be also non-linear and can contain
Min/Max operators or logical operators [18].

2.2.3. The Control block
The Control block evaluates for each region the “need”

of evolution of a segmentation map. It takes as input the
criterion values Ck(n) and produces the control value Ek(n)
for each region n. This value is normalized between −1
and 1. A positive control value Ek(n) means that the region
n must be modi4ed because it doesn’t reach the required
quality. A null control value of a region n means that this
region has reached the required quality. A negative control
value means that the considered region has been modi4ed
beyond the expected quality.

Di6erent kinds of Control blocks can be implemented
(Table 1). For example, a di6erential control is given by the
equation below:

Ek(n) =
Ck(n) − Ck−1(n)
Ck(n) + Ck−1(n)

; (2)

where k represents the current iteration and n is the region
number.

2.2.4. The Modi=cation block
The Modi4cation block contains the strategy for the mod-

i4cation of the segmentation map. It can be considered as
the core of the segmentation process. It can be very com-
plex but, in every case, it has to respect the Control block
requirements Ek(n). To modify the region map, this block
can do all the measures it needs on the original image and
on the current segmentation map.

By now, we have identi4ed three kinds of Modi4cation
blocks:

(1) Modi4cation with a constant number of regions (region
growing, active mesh, : : :).

(2) Modi4cation with creation of new regions (splitting,
: : :).

(3) Modi4cation with deletion of regions (merging, : : :).

For the methods working in local mode, like Markovian
based ones, this block transmits to the Measure block the site
position s to be used in the next iteration. This block gives
as output the new segmentation map RMk+1 build from its
modi4cation strategy.

2.2.5. The Stop block
The Stop block has to stop the iterative process using

strategies not compulsory linked to the region measures
(homogeneity: : :). An example of such a block is a detection
of the stability of the segmentation map between two suc-
cessive iterations. Note that “stopping” criterion based on an
evaluation of the quality of the segmentation map should be
implemented preferably into the Measure/Criterion/Control
blocks. Indeed, if the control value Ek(n) is equal to zero,
then the segmentation map will be stable. Nevertheless, this
is not necessary because one can choose to stop a segmen-
tation process with di6erent criterions than the one used for
the evolution control, like a maximal number of iterations.

3. Methods decompositions

Experiments were carried out to validate the proposed
FM. Tests were conducted on di6erent segmentation meth-
ods [8–10,18–27]. To illustrate this, we present the decom-
positions and the implementation results of a split method,
a Markov random 4eld (MRF)-based method and an active
contour method.

3.1. Decomposition of a splitting based segmentation
method

The basic idea of the quadtree region splitting [10] is to
recursively break the image into a set of quadrangular dis-
joint regions until each sub region becomes homogeneous.
The decomposition of this method according to the FM is
shown in Fig. 2.
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Fig. 2. Functional model of a Split method.

The similarity constraint in this method is the gray level
variance. So, the Measure block computes the variance of
all the regions in the image at each iteration. The Criterion
value is equal to the measure value itself. The Control block
is a control by threshold where the control value Ek(n) is
set to one when the criterion for region n is greater than a
threshold �, and zero otherwise.

The Modi4cation block represents the splitting process. If
the control value of a particular region is positive, then the
region is split into four quadrants. This process is repeated
for all the regions of the image. When the control value is
equal to zero, it means that the square region created in this
way is homogeneous.

The Stop block simply observes the segmentation map at
the current iteration and compares it with the one obtained

(a) (b) (c)

Fig. 3. Results of the split method: (a) original image, (b) polygonal structure of the resulted image, and (c) regions of the image 4lled by
their mean intensity.

one iteration before. If there is no variation, the segmentation
process is stopped.

Fig. 3 presents the results obtained after several iterations
of the split process implemented by the FM of Fig. 2. In Fig.
4, we represent the evolution of the global criterion value
with a number of iterations for the split method. The global
criterion GCk is de4ned by Eq. (3) where N is the total
number of regions in the image, k is the iteration number
and Ck(n) the criterion value of region n.

GCk = 1=N
N∑
n=1

Ck(n) (3)

From Fig. 4, we note that the global criterion is decreasing
while the segmentation process progresses. A good segmen-
tation result is obtained after 7 iterations. All the resulting
regions are homogeneous compared to the given variance
threshold (�= 20). This is in total accordance with our FM
criterion rule.

3.2. Decomposition of a MRF-based segmentation
method

As an example of MRF-based segmentation methods, the
method proposed by Pappas [8] is decomposed and imple-
mented with our FM working in local mode. This segmen-
tation method uses a maximum a posteriori (MAP) crite-
rion optimized by iterated conditional modes (ICM). The a
priori model used to characterize the segmented image fol-
lows a Gibbs distribution with one or two-point clique. A
white Gaussian noise is chosen for the conditional probabil-
ity modeling the noise. Fig. 5 represents the resulting blocks.

A local mean mns (gray level mean of the neighbor pixels
of the site s having label n) is computed inside the Measure
block. The 4rst measure Fk(1; n) is a local deviation from
the mean and is de4ned by

Fk(1; n) = (ys − mns )
2; (4)
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Fig. 4. Global criterion evolution through iterations for the split
method decomposition.
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Fig. 5. Functional model of a Markovian based segmentation.

where ys is the gray level of the site s. The second measure
Fk(2; n) associated with the a priori model and the clique
potential Vc(s) is given by

Fk(2; n) =
∑
c∈CQ

Vc(s): (5)

The summation is over all the cliques CQ and the clique
potentials Vc [8] depend only on the pixels with label n in
the segmentation map RMk that belong to clique c.

Note that the Measure block gives a set of two measures
for each possible label (region). The current site s is indi-
cated to the Measure block by the Modi4cation block, which
corresponds to the FM local mode.

The Criterion block is simply an additive combination of
the two measures. The parameter wk(2; n) is used to control
the relative weight of the two measures.

The Control block contains the optimization method,
which is deterministic in our case (ICM). The ICM leads
to a Control block which 4nds the label n = n0 for which
e−Ck (n) is maximum over n and then “tells” to the Modi4-

cation block to expand the region n0. “Expanding” means
that the considered site s must take the label n0 so “the
region” n0 wins one pixel.

The Modi4cation block simply gives to the current site
the label n for which Ek(n) is equal to 1. Then, it chooses the
next site to be considered according to its internal scanning
procedure and sends its coordinates to the Measure block.
At the end of each scanning, the Modi4cation block updates
the region map RMk .

The Stop block simply looks at the number of modi4ed
pixels at the end of each scanning cycle and stops the iter-
ation if this number is under a pre-de4ned threshold.

Note that a Control block, which computes the minimum
of the criterion value, can replace the ICM Control block.

Examples of images obtained with the FM implementa-
tion of the Markovian method are shown in Fig. 6. The curve
in Fig. 7 illustrates the evolution of the global energy over
the whole segmentation process. The aim in this method is
to minimize this energy at every point in the image. This
global energy decreases until convergence.

3.3. Decomposition of an active contour method

The third method corresponds to an active contour method
[28]. We remind that the snakes or active contours [25] are
curves de4ned by a set of control points within an image
domain that can move under the inOuence of internal forces
coming from the curve itself and external forces computed
from the image data.

The functional decomposition of this method using the
local mode produces the blocks represented in Fig. 8.

The Measure block computes two measures (Eq. (6)) cor-
responding to the displacement of one snake control point
at site s given by the Modi4cation block in local mode.[
Fk(1; n)

Fk(2; n)

]
=

[
PUxk(s; n)

PUyk(s; n)

]
; (6)

where PUxk(s; n);PUyk(s; n) are the displacement in the x
and y directions, respectively.

The displacement vector of the control point s at the iter-
ation k, is noted PUk(s; n) = (PUxk(s; n);PUyk(s; n)). It
is obtained from the P × 2 matrix PUk(n), which contains
the displacement of the P control points of region n (snake),
given by the following equation [28]:

PUk(n) = [�I + A]−1[wFext(U
k−1(n))

+�Uk−1(n)] − Uk−1(n); (7)

where Uk(n) is the P × 2 coordinates matrix of all the
control points. Fext represents the external forces [25]. w is
a weighting parameter. � is the damping coeAcient. A is a
P × P pentadiagonal matrix. I is the identity matrix.

The Criterion block computes the magnitude of the dis-
placement (Eq. (8)). The criterion value Ck(n) decreases
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(a) (b) (c)

Fig. 6. Results of the Markovian method: (a) original image, (b) initial image with 4 regions, and (c) 4nal result of the Markovian
segmentation.

through iterations until the snake reaches its 4nal position.

Ck(n) =
√

(Fk(1; n))2 + (Fk(2; n))2: (8)

We use a Control block by threshold like in the quadtree
method (Section 3.1). It gives a control value equal to zero
when the displacement’s magnitude is under a 4xed thresh-
old � (Fig. 8).

The Modi4cation block contains the strategy to modify
the segmentation map. In this case, it moves the snake con-
trol points. This block calculates the new coordinates of a
control point belonging to the snake de4ning region n, by
the following equation:

Uk(s; n) = Uk−1(s; n) + PV k(s; n); (9)

where PV k(s; n) is a displacement, which must be computed
in the Modi4cation block. In this speci4c case [28], the
displacement PV k(s; n) is equal to PUk(s; n) obtained from
PUk(n) in Eq. (7). 1

The Stop block combines two ways for stopping the seg-
mentation process. The 4rst way is based on a suAcient num-
ber of iterations. The second one stops the process when the
region map do not change between two modi4cation cycles.

We have carried out the above experiment with a smooth
object as shown in Fig. 9(a). Fig. 9(b) shows the initial
position of the snake. It can be seen from Fig. 9(c) that
the 4nal snake con4guration closely approximates the 4nal
boundary.

The evolution of the global criterion through a number of
iterations is represented in Fig. 10. In this case, the global
criterion is the sum of the magnitude of the displacement
of each snake control point. We can see that the criterion
value, which corresponds to the 4nal con4guration of the
snake, is the lowest over the segmentation process.

1 Note that if some of the measures computed by the Modi4cation
block are similar to those calculated in the Measure block for a
particular segmentation methods, then the programming strategy
we use allows the Modi4cation block to get them in the Measure
block for saving execution time.
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Fig. 7. Global criterion evolution through iterations for a Markovian
method.
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3.4. Decomposition strategy

The formalism proposed by our FM is very Oexible since
it is adapted for many segmentation methods. Nevertheless
the decomposition of some methods according to the FM is
not always trivial. To overcome the diAculty, it is necessary
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(a) (b) (c)

Fig. 9. Results of the snake method: (a) original image, (b) initial contour, and (c) 4nal contour after the convergence of the snake.

to analyze functionally the method with the following strat-
egy. First, identify all the measures and the mode (global or
local) in which they are made. These can be of two kinds.
The 4rst type of measures are combined in the Criterion
block to evaluate the segmentation quality. The second kind
of measures are used by the Modi4cation block to change
the segmentation map. After this, a control must be de4ned
to assess the evolution quality of the segmentation map. Fi-
nally, the segmentation map is modi4ed in the sense given
by the original algorithm in the Modi4cation block. Note
that this analysis and the corresponding FM implementation
often lead to a new insight of the initial algorithm.

The proposed FM is naturally suitable for iterative seg-
mentation. For non-iterative segmentation techniques (like
non-adaptive thresholding algorithms), the 4nal segmenta-
tion map is directly obtained without any iteration. This is
done in the Modi4cation block.

We have shown with the previous examples that the pro-
posed model can decompose di6erent segmentation tech-
niques within the same framework. This allows us to give
the term ‘generic’ to our model. We note also that the FM
has the same behavior than the chosen original algorithm.
We can say that our FM o6ers a uni4ed vision to im-
age segmentation techniques which can be represented by
one SO, and improves the functional comprehension of the
methods.

4. Generic model and programming paradigm

The programming paradigm associated to the FM is de-
4ned by a set of virtual base classes corresponding to the
block types (Measure, Criterion, Control, Modi4cation and
Stop). These base classes embed the theoretical constraints
of the model, de4ne the interface between the blocks and
enforce the block chaining and the corresponding informa-
tion Oow. The building of a new speci4c block is done by
inheritance of the corresponding base class, so no modi4-
cation of the block interface is allowed. This way, only the
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Fig. 10. Global criterion evolution through iterations for an active
contour method.

speci4city of the new block has to be written and the new
block is usable with all the others. The C++ allows such
an implementation of the functional model and guarantees
the reusability of each speci4c block with any others.

We have decomposed with our FM several di6erent meth-
ods and we have obtained a number of blocks, which are
listed in the Table 1. For example, the 4rst method (Sec-
tion 3.1) is built with Measure 1, Criterion 1, Control 2 and
Modi4cation 1.

Note that the same blocks can be used by di6erent seg-
mentation methods. As a consequence the implementation
of a new segmentation technique needs only the develop-
ment of a limited number of new blocks. Furthermore, be-
ginning with an existing method, a new one can be easily
implemented and tested by changing some blocks like the
addition of a new measure or the change of the modi4cation
strategy.

To easily bene4t of the FM advantages, we have devel-
oped a software (Fig. 11) which allows interactive building
of segmentation methods by block selection. Nevertheless,
it is never guaranteed that combining arbitrary blocks lead to
a useful e6ective segmentation method. Each button (Mea-
sure, Criterion, Control or Modi4cation) allows the user to
choose and to con4gure one of the blocks given in the Ta-
ble 1. The connection between the blocks is done through
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Fig. 11. Segmentation’s graphic interface based functional model of the quadtree method.

the base classes and the iteration process is activated by
the ‘Segmentation’ button. The ‘iterator’ button permits a
user to con4gure the Stop block. The left window shows
the original image and the right one presents the segmented
image, which evolves through iterations. Note that this soft-
ware is not dedicated to a speci4c segmentation technique.
The same interface is used for any segmentation methods
implemented with the paradigm de4ned by the FM.

The segmentation model software [17] is based on C++
implementation of the base classes built over an open source
library VTK (http://www.kitware.com). We chose VTK be-
cause of its extensibility and its ease of use with many
programming language (C++, Tcl, Python, : : :). VTK also
gives a pipelining structure well adapted to the FM block
chaining. All the results presented in Section 3 have been
obtained with the software interface shown in Fig. 11.

5. Chaining segmentation operators

Up to this point, we did not deal with complex segmen-
tation methods because we knew that they could be repre-
sented by more than one SO. The study of di6erent segmen-
tation algorithms led us to identify three ways to combine
the segmentation operators. These ways are similar to those
reported in Ref. [29]. So combination of segmentation op-
erators can be performed through initialization, retroaction
or fusion of information.

To illustrate the chaining of SO in the case of integra-
tion of segmentation techniques, we present two complex
methods: The split-and-merge [10,11] and the region grow-
ing method [9,30]. The split-and-merge decomposed by our
FM can be represented by a combination of two SO through
initialization (Fig. 12). The 4rst SO implements the split

Split Merge

Fig. 12. Serial chaining of the split operator and the merge one.

method and the second one the merge method. When the
split operator has 4nished, it transmits its results to the merge
operator which begins its process. An example of segmenta-
tion results of the split-and-merge method is shown in Fig.
13.

The second method decomposed is a region growing
method [9,30]. It is initially described through four steps.
These could a priori lead to four SO but a careful analysis of
the method through the FM shows that two SO are suAcient
(Fig. 14). The 4rst one is a dilation SO and the second one
is a contraction SO. Note that the iteration is repeated over
the two SO, which corresponds to a combination through
retroaction.

Fig. 15 illustrates the segmented image obtained by the
region-growing algorithm implemented by the FM presented
in Fig. 14.

http://www.kitware.com
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(c)(a) (b)

Fig. 13. Results of the split-and-merge method: (a) original image, (b) result of the split SO, and (c) result of the merge SO.

Dilation Contraction

Fig. 14. Combination through retroaction of a dilation operator and
a contraction one.

6. Conclusion and perspectives

We have proposed a novel approach that uni4es the
segmentation techniques under the same framework.
This approach is based on a functional modeling of the

(a) (b) (c)

Fig. 15. Results of the region growing method: (a) original image, (b) initial seed by arbitrary thresholding, and (c) segmented image using
the FM.

segmentation process. Only 4ve elementary blocks are
chained in an iterative way within a so-called segmentation
operator (SO). These blocks correspond to functions ap-
pearing in every segmentation method. Simple segmentation
methods can be decomposed with one SO. The chaining of
SO allows to build cooperative segmentation methods. Nev-
ertheless, further work has to be done on the cooperation
strategies and on the control of multi SO methods.

The FM can be used as a programming paradigm. This is
demonstrated with a generic interface which allows to build
and control any segmentation method implemented through
the FM. The FM can also be used to understand an existing
method, to compare the structure of di6erent methods and to
de4ne new methods. Obviously, it is not possible to prove
that every segmentation methods will 4t in the FM, but our
experience in integrating a large number of known methods
in the model is encouraging. Indeed, our experimental results
clearly indicate the eAciency of our model and point the
way toward a number of future developments. For example,
experiments in progress on various multi-resolution image
segmentation techniques show that the FM is still valid in
the context of complex methods.
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