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Abstract

When dealing with deep learning models and embedded systems, one of the main difficul-
ties is the memory, computation, and energy resources needed by the former and offered
by the latter. In this work, we propose a novel ternarization heuristic (model weights can
take only three different values), by quantizing the model using its weights’ statistics as
well as asymmetric pruning. Indeed, we propose to use the mean and standard deviation
of the weights to compute two asymmetric thresholds, allowing to separate the positive
values from the negative ones before ternarization. We introduce two hyperparameters
in these thresholds, allowing to control the trade-off between compression and classifica-
tion performances. Then, after thresholding, ternarization is done as in trained ternary
quantization (TTQ). We evaluate our method on three datasets, among which two are
medical: a cerebral emboli (HITS) dataset, an epileptic seizure recognition (ESR) dataset,
and the MNIST dataset. We tested two types of deep learning models: 2D CNNs and 1D
CNN-transformers. The results show that our proposed approach, aTTQ, achieves a better
trade-off between classification performance and compression rate than TTQ, for all the
models and datasets. In fact, our method is able to decrease the memory requirements
of a 2D CNN model on the HITS dataset by more than 20% compared to TTQ, with a
degradation of the classification performance of only 0.68% in terms of Matthews corre-
lation coefficient (MCC). For the 1D CNN-transformer on the ESR dataset, we achieve
even better results, with a decrease of the memory requirements of more than 92% with
respect to TTQ, with a degradation of the MCC of only 0.91%. The code is available at:
https://github.com/attq-submission/aTTQ12

1. Introduction

In the past years, deep neural networks such as convolutional neural networks (CNN) or
transformers, have reached state-of-the-art performances in several tasks such as computer
visions (Li et al., 2022; Dosovitskiy et al., 2021), natural language processing (Wolf et al.,
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2020), and signal processing (Che et al., 2021; Vindas et al., 2022b). However, these models
tend to be energy-intensive, having thousands/millions of parameters, and often requiring
important computational resources (memory, GPU), which prevent its common use on
embedded systems.

This last point is of particular interest as in recent years, deep learning is starting to
be used more and more used in the medical field (Piccialli et al., 2021). However, the
computation and memory capabilities of medical devices (especially the portable ones) are
often limited, making the use of large models difficult. In this work, we focus on medical
signal classification, more precisely transcranial Doppler (TCD) ultrasound for cerebral
emboli (CE) classification, and electroencephalogram (EEG) for epileptic seizure recognition
(ESR). These two tasks are of particular interest for public health as the former can help
stroke prevention (as CE can cause ischemic stroke (Rosenkranz et al., 2006)), and both
stroke and epilepsy are among the most common neurological disorders leading to disability
or death (Feigin et al., 2019; Organization, 2006).

Moreover, recent works have used deep learning models to do medical signal classification
based on CNNs and transformers models. For TCD signals classification, 2D CNNs on time-
frequency representations (TFRs) have been used to classify artifacts from solid emboli (SE)
and gaseous emboli (GE) (Vindas et al., 2022a). Other works exploit directly the signal
using hybrid CNN-Transformer models or multifeature models (Vindas et al., 2022b). For
ESR classification, the signal is often directly used thanks to 1D CNNs or recurrent neural
networks (RNN) (Xu et al., 2020; Hilal et al., 2022). Nevertheless, even though these models
have reached great performances, they often have hundreds of thousands or even millions
of parameters.

To tackle this problem, recent works have proposed to reduce the memory requirements,
using different model compression techniques (Cheng et al., 2018). Several works focus
on quantization (Gholami et al., 2022) where the precision of the models’ parameters is
reduced from 32 or 64 bits to lower precision, allowing to reduce the memory requirements,
without a considerable decrease of the model performances. Other works focus on removing
redundant parameters of the models using pruning techniques (Hoefler et al., 2022), which
also allows reducing latency and memory requirements. Moreover, efficient architectures can
be manually designed, such as SqueezeNet (Iandola et al., 2016) and MobileNet (Sandler
et al., 2018), or automatically designed through neural architecture search (Elsken et al.,
2021). The main drawback of this last family of methods is that they are time-consuming
and can require important computation resources during their development. Therefore, we
are going to focus on quantization and pruning techniques.

To take advantage of both techniques (quantization and pruning) some works have
proposed to apply them sequentially as they are compatible and independent (Han et al.,
2016). This allows to further increase the compression rate and latency. Others works, such
as binary neural networks (Rastegari et al., 2016) or trained ternary quantization (TTQ)
(Zhu et al., 2017) does implicit pruning thanks to their quantization heuristic. However,
to our knowledge, few works try to directly take into account pruning in the quantization
mechanism.

In this paper, we propose a new ternarization heuristic based on asymmetric pruning and
weights’ statistics, increasing the sparsity of the weights’ parameters, while keeping the rest
of the quantized weights in a reduced precision, without an important degradation of the
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classification performance. The rationale behind our approach is that asymmetric pruning
enlarges the family of neural networks that can be explored during training, allowing to
get models with a better trade-off between compression rate and classification performance.
What is more, a ternarization heuristic based on the weights’ statistic allows a better
adaptation of the method to new datasets. On top of that, in our approach, we introduce
two hyperparameters, tmin and tmax, allowing to control the sparsity rate of the quantized
weights, and therefore the trade-off between compression rate and model performance. Our
main contributions can be summarized as follows:

• A new heuristic for trained ternary quantization, based on the weights’ statistics of
the model.

• Asymmetric pruning before ternarization, allowing a better trade-off between com-
pression and classification performance.

• Asymmetric parametrization of the sparsity rate (two hyperparameters), allowing to
control the trade-off between classification performance and compression.

The rest of the paper is structured as follows. In Section 2 we present some related works. In
Section 3 we introduce the proposed compression method in detail. In Section 4 we explain
the datasets that we used and how they were pre-processed to obtain the final features.
In Sections 5 and 6 we provide the experimental setup and we discuss the results of the
different experiments, respectively. Finally, in Section 7 we conclude and give the guidelines
to our future work.

Generalizable Insights about Machine Learning in the Context of Healthcare

Several medical devices are limited in terms of memory and energy resources (e.g. portable
TCD, EEG or ECG devices, smartwatches, etc.). Deep learning approaches are more and
more used in the medical domain because of its impressive performances in several tasks.
However, these models are often resource and energy greedy, which can limit their use in
practical clinical situations. In this work, we propose to reduce the memory requirements of
deep learning models (CNNs and transformers), by proposing a new quantization heuristics
for trained ternary quantization. This allows to increase the compression rates of the
quantized models, without an important degradation of the classification performances with
respect to full precision models. In summary, our method further pushed the compression
capabilities of extreme trained ternary quantization while maintaining good classification
performances, which can be beneficial for medical applications.

2. Related Work

2.1. Model quantization

Quantization consists in reducing the precision of the weights of a model from 32 or 64
bits, to a lower precision (Gholami et al., 2022), which can be achieved using different
approaches. This can be beneficial for memory resources and inference, especially for ag-
gressive quantization where one can profit from efficient logic/arithmetic operations (Jacob
et al., 2018) or strategies (Zhu et al., 2017; Trusov et al., 2022). Early approaches were
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based on matrix factorization and vector quantization (Gong et al., 2014; Kim et al., 2019),
but they were mainly designed for dense layers. More recent works, have quantized con-
volutional layers using weight sharing, which can be done by applying weight clustering
(Han et al., 2016) or Gaussian mixture models (Ullrich et al., 2017). Because of the com-
pression, these methods often reduce the performances of the models. Some works have
proposed knowledge-distillation-based techniques (Zhang et al., 2020; Sun et al., 2019) to
guide the training of quantized models in order to achieve similar performances than their
full-precision counterparts. To do this, the main idea is to train a quantized model with
the same architecture as the full-precision one but with quantized weights, and guide it to
match the soft output probabilities of the full-precision model.

By the same token, the performance drop can be reduced by combining different quan-
tization methods in order to have different precision at each part of the model (Gholami
et al., 2022; Dong et al., 2019, 2020; Yao et al., 2021). The main difficulty with these mixed
quantization methods is the choice of the layers of the model that are going to be quantized
and its quantization precision. To handle this, some methods have focused on metrics to
evaluate the impact of quantization on the performances of the model. Indeed, (Dong et al.,
2019, 2020; Yao et al., 2021) used hessian-based metrics, allowing to evaluate the flatness of
the loss landscape, and therefore avoiding the extreme quantization of layers with irregular
landscapes.

Finally, quantization methods are rarely straightforward to implement during the train-
ing of the models because of its non-differentiable nature. To tackle this problem, the
different methods often use the straight through estimator (STE) (Yin et al., 2019; Zhu
et al., 2017; Bhalgat et al., 2020), or reformulate the quantization as a differentiable prob-
lem in order to be able to use gradient descent (Yang et al., 2019). However, for extreme
quantization the optimization of quantized models can be difficult as it often introduces
significant noise during training (Fan et al., 2020).

2.2. Model pruning

Pruning consists in removing redundant parameters of a model by setting them to zero.
This is particularly interesting in neural network models as they are over-parametrized,
so pruning can act as a regularizer improving the generalization capabilities of the models
(Hoefler et al., 2022). This family of methods can also improve memory and latency, as
the obtained parameters tensors are sparse (Gondimalla et al., 2019). Moreover, different
approaches can be used to prune the parameters of a model. Some works remove the
weights with minimal norm (L1 or L2 norm), using a pre-defined threshold or a number of
weights to prune (Han et al., 2016). More complex methods choose the weights to remove by
computing their importance based on the statistics of the following layer’s parameters (Luo
et al., 2017), or by creating subsets of neurons to fuse together, based on determinantal
point processes. By the same token, other approaches have tried to overcome the non-
differentiability of threshold operators during pruning by using reinforcement learning (He
et al., 2018), genetic algorithms (Xu et al., 2021), or differentiable threshold functions
(Manessi et al., 2017).

Finally, even if the aforementioned methods allow removing an important percentage of
the parameters of the network by setting them to zero, the rest of the parameters remain
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in full-precision (32 or 64 bits), preventing the use of efficient operations and increasing the
memory requirements with respect to quantization methods. To address this, some works
have tried to combine pruning and quantization with different approaches. (Han et al., 2016;
Park et al., 2018) tried a sequential combination of pruning and quantization (combined with
other techniques), whereas (Tung and Mori, 2020) used Bayesian optimization techniques
and (Ullrich et al., 2017) used soft-weight sharing to achieve both pruning and quantization.

3. Methods

In this section, we present a new quantization heuristic for trained ternary quantization
(TTQ), called aTTQ. Our method relies on two assumptions: (1) asymmetric pruning
improves the trade-off between compression and classification performance, and (2) pruning
and quantization based on the weights’ statistics allows a better adaptation to new datasets
and models. The first assumption can be justified by the fact that asymmetric pruning
increase the model search space during training (a relaxation of the optimization scheme).
The second assumption is plausible as the thresholds used for pruning depend on the weights’
statistics which change during the training/fine-tuning step.

The global pipeline of our approach can be found in figure 1

3.1. Preliminaries: Ternary quantization

Ternary quantization consists on quantizing the weights of a given layer during training,
using only three possible values (ternary values): -1, 0 and 1. To avoid drastic performance
drops, given a layer to quantize B, Li et Liu (Li and Liu, 2016) introduce a scaling factorWB

depending on the weights’ statistics, thus quantizing in the set of values {−WB, 0,WB}. To
improve this, TTQ used two learnable scaling parameters, Wl for the negative values, and
Wr for the positive values, thus quantizing in the set of values {−Wl, 0,Wr}. Quantization
of a full-precision weight tensor w into its ternary counterpart wt is done as follows:

wt =


Wl if w < −∆l

0 if w ∈ [−∆l,∆l]
Wr if w > ∆l

(1)

where Wl,Wr ∈ R are learnable scaling parameters (per layer), ∆l = t×max(|w|) is a
threshold that depends on a hyperparameter t, controlling the sparsity of TTQ. Following
the results in (Zhu et al., 2017), we fix t = 0.05 for the rest of the paper.

3.2. Weights statistics based pruning

We propose novel asymmetric ternarization heuristic, where the quantization threshold
does not depend on the maximum absolute value of the values of the weights’ tensor, but
it depends on the statistics of it:

wt =


Wl if w < ∆min

0 if w ∈ [∆min,∆max]
Wr if w > ∆max

(2)
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Figure 1: Proposed alternative TTQ (aTTQ) method. The main difference with respect
to TTQ lies in the pruning mechanism done before ternarization: we use two
asymmetric thresholds, ∆min and ∆max instead of one symmetric threshold
∆min = −∆max = −∆L. The normalization step, always used in TTQ, is op-
tional in our approach.

where w and wt are the full-precision and ternarized weights, Wl,Wr ∈ R are learnable
scaling parameters, ∆min = µw + tmin × σw and ∆max = µw + tmax × σw are thresholds for
pruning, and tmin and tmax are two hyperparameters to tune with the constraint tmin ≤
tmax, controlling the sparsity rate. Indeed, if tmin > tmax the ∆min > ∆max and therefore
∀w ∈ R, wt ̸= 0, so no pruning is done.

Contrary to TTQ, in this approach we have two asymmetric thresholds, one for the pos-
itive weights, and one for the negative ones, giving more degrees of freedom for quantization
and for pruning (figure 1). The gradients of L, the loss to optimize, can be computed using
the straight forward estimator as in TTQ, the only difference is that the used threshold ∆l

is replaced by the thresholds ∆min and ∆max:

∂L

∂w
=


Wl × ∂L

∂wt
if w < ∆min

0 if w ∈ [∆min,∆max]

Wr × ∂L
∂wt

if w > ∆max

(3)
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3.3. Layer selection

To select the layers that are going to be quantized, we used the Hessian-based metric
introduced in (Dong et al., 2020). This metric is based on the trace of the Hessian matrix,
and allows quantifying the curvature of the loss landscape. The rationale behind this metric
is that, layers with flat loss landscapes (small values of the trace of the Hessian matrix) are
more robust to quantization as it is more difficult to escape the reached local minima than
layers with a curved loss landscapes.

3.4. Evaluation metrics

To compare the sparsity and compression of the obtained models, we introduce different
metrics defined in the following paragraphs. We denote as MFP the full precision model
and MQ a quantized model obtained from MFP . By the same token, we denote as nbits a
function allowing to count the number of bits necessary to store the (nonzero) weights of a
model, and nqw/nzqw two functions allowing to count the number of weights/zero weights
of a model, among the weights selected for quantization using the Hessian-based metric of
section 3.3.

Sparsity. To quantify the sparsity achieved during the quantization of the different mod-
els, we introduce the sparsity rate over the quantized weights, noted SRQW and defined
as:

SRQW (MFP ,MQ) =
nzqw(MQ)

nqw(MFP )

where higher values of SRQW indicates sparser models.

Compression. We want to quantify the compression reached thanks to ternarization and
pruning (simultaneously). To do this, we introduce the compression rate, CR, defined as
follows:

CR(MFP ,MQ) =
nbits(MQ)

nbits(MFP )

To facilitate comparison between methods, we work with the compression rate gain CRG,
defined as:

CRG(MFP ,MQ) = 1− CR(MFP ,MQ)

We denote as CRT
G and CRQ

G the compression rate gains of the whole model and the layers
selected for quantization, respectively.

4. Data

To train and evaluate our proposed method, we used one nonmedical dataset, MNIST
(LeCun and Cortes, 2010), and two medical datasets: a private Transcranial Doppler (TCD)
dataset, called the HITS dataset (Vindas et al., 2022a), and one electroencephalogram
(EEG) public dataset from the UCI repository (Andrzejak et al., 2002). For the MNIST
dataset, in order to reduce computation resources, we only used 10% of the training samples
to train the different models. The two other datasets will be detailed hereafter.

7



Asymmetric trained ternary quantization for model compression

4.1. HITS dataset

We used a private transcranial Doppler (TCD) high intensity transient signals (HITS)
dataset described in (Vindas et al., 2022b). Hereafter, we specify how the data was acquired,
as well as the preprocessing steps.

4.1.1. Data acquisition

TCD recordings between 30 and 180 minutes were acquired from 39 subjects coming from
neurovascular and cardiovascular care units from 11 different healthcare centers. These
patients were aged between 21 and 85 years old (median age of 63), and 15 were male, 19
female, and 5 unknown. The recordings were performed using two different TCD devices
from Atys Medical, the TCD-X Holter and the WAKIe R3, with a 1.5 MHz robotized
probe. Moreover, the recordings conditions were heterogeneous as some patients can have
one diagnosed pathologies (carotid stenosis, patent foramen ovale, atrial fibrillation), some
received a contrast agent injection (iodine-containing agent or sonovue), and some patients
were monitored during surgical procedures (atrial fibrillation ablation and transcatheter
aortic valve replacement).

Furthermore, the recordings were carried out in the middle cerebral artery (MCA) and
the objective was to detect cerebral emboli (solid or gaseous). Therefore, we obtained the
following acquisition information from Atys Medical for emboli detection on the MCA:

• Insonation probe frequency: 1.5 MHz.

• Insonation depth: 45-55 mm.

• Pulse repetition frequency: 4.4-6.2 kHz.

• Sample volume: 8-10 mm3

4.1.2. Data pre-processing

From the recordings, 1541 high intensity transient signals (HITS) are extracted, and dis-
tributed in three classes: artifacts (403 HITS), gaseous emboli (569 HITS), and solid emboli
(569 HITS)3. Into the bargain, these signals are extracted using the criteria of the Ninth
International Cerebral Hemodynamic Symposium (1995): (1) duration smaller than 300
ms, (2) unidirectional in the time-frequency domain, (3) intensity increase with respect to
the background signal (blood flow) of at least 3 dB, and (4) musical characteristic in the
audible sound, similar to a ”chirp”. For more details about the distribution of HITS per
class and per subject, we invite the reader to see appendix A.

Moreover, from each HITS, we get two types of representations: the raw signal (with
a sample frequency between 1100 Hz and 1400 Hz) and a logarithmic scale spectrogram,
both normalized with the mean and standard deviation of the training set. The logarithmic
scale spectrograms were computed using a length of the windowed signal after padding of
nFFT = 128, a size of overlap of noverlap = 8, and a Blackman window following (Vindas
et al., 2022b).

3. Four HITS were not taken into account as the expert annotators were not able to distinguish them
between solid or gaseous emboli
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Finally, the 1541 used HITS were split into two subsets in a subject-wise manner, one
for training (63% of the samples), and one for testing (37% of the samples). For more
details about this dataset and the pre-processing steps, we refer the reader to (Vindas
et al., 2022b,a).

4.2. ESR dataset

To validate our proposed method we also used a public medical signal dataset: the pre-
processed Epileptic Seizure Recognition dataset (ESR) (Andrzejak et al., 2002) from the
UCI repository4. The dataset is composed of 11 500 pre-processed5 electroencephalogram
(EEG) signals, distributed in five classes equally distributed: (1) seizure activity and (2)-(5)
no seizure activity. As most works using this dataset, we do binary classification between
seizure activity (2300 samples) and no seizure activity (9200 samples), but the reader can
refer to (Andrzejak et al., 2002) or appendix B to get more details about the five classes.

Furthermore, as for the HITS dataset, we extract two types of representations: the raw
signal sampled at 176 Hz, and a logarithmic scale spectrogram, both normalized using the
mean and standard deviation of the training set. The logarithmic scale spectrogram was
obtained using nFFT = 32, noverlap = 4, and a Blackman window.

Finally, as for the HITS dataset, the dataset was split into two subsets: one for training
containing 90% of the samples, and one for testing containing 10% of the samples. However,
contrary to the HITS dataset, the split was not done subject-wise because the structure of
the ESR dataset does not permit it.

5. Experiments

We conduct three experiments to evaluate the main contributions of our method. The
first experiment compares our proposed weight-statistics quantization heuristics, aTTQ,
with respect to TTQ in terms of classification and compression performances. The second
experiment studies the influence of the two hyperparameters of our approach, tmin and
tmax, on two different datasets with two different models. The third experiment focuses on
the influence of weight-normalization in the final performance of the different compressed
models. The code is available at: https://github.com/attq-submission/aTTQ67

5.1. Architectures

We used three different models, depending on the dataset: one vanilla 2D CNN for the
MNIST dataset, and one 2D CNN and 1D CNN-transformer for the medical signals datasets.

The vanilla 2D CNN MNIST model is composed of two convolutional layers, followed by
2D max polling and ReLU activation applied for both, and dropout after the second convo-
lutional layer. Then a fully connected (FC) classifier was applied, composed of two linear
layers, followed by dropout and ReLU activation for the first linear layer, and logarithmic
softmax for the second linear layer.

4. We used the public available version found at https://www.kaggle.com/datasets/harunshimanto/

epileptic-seizure-recognition

5. We refer the reader to the UCI repository for the pre-processing details.
6. Username attq-submission and password cgcEsp&GDY s@V Q42
7. Mail: attqsubmission@gmail.comn@gmail.com (same password)
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Moreover, for the HITS and ESR datasets, we used the same architectures as (Vindas
et al., 2022b)8. For the HITS dataset, the hyperparameters of the 1D CNN-transformer were
the same as (Vindas et al., 2022b). For the ESR dataset, we used the following hyperpa-
rameters: the last 1D convolutional layer is applied twice, 4 attention heads (per multi-head
attention) are used for the 4 Transformer encoder layers, a Transformer intermediate hidden
dimension of 8 is employed, and a dimension of 4 for the projected representation is used
for final classification. At last, for the 2D CNN, all the hyperparameters were the same as
(Vindas et al., 2022b), except for the number of initial convolutional filters which were set
to 64.

5.2. Training parameters

Table 1 presents the training parameters used for the different models on the different
datasets. All the models were trained with cross-entropy loss function optimized using
Adamax optimizer for the 2D CNN models, and Noam for the 1D CNN-transformer models,
with β1 = 0.0, β2 = 0.999 and 4000 warm up steps for all the models, except for the TTQ
and aTTQ quantized HITS models, which were trained with 700 warm up steps. To handle
class imbalance, class weights (King and Zeng, 2001; Pedregosa et al., 2011) were applied
to all the models. We used a weight decay of 10−7 for almost all the models, except for the
1D CNN-transformer models trained on the ESR dataset, and the 2D CNN trained on the
MNIST dataset which used a weight decay of 0, and the full-precision ESR 2D CNN which
used a weight decay of 10−5. Additionally, we used a batch size of 32 for all the models
except for the ESR 1D CNN-transformer models which used a batch size of 64.

Furthermore, using the approach presented in 3.3, we selected the different layers to
quantize, and we quantized only their weights, without the biases. For the MNIST 2D
CNN, all the convolutional layers were quantized; for the 2D CNN used for the medical
datasets, we quantized all the convolutional layers except the first one; for the 1D CNN-
Transformer, we quantized the second convolutional layer, plus the second linear layer of
all the encoder layers of the transformer encoder. The percentage of selected weights to
quantize (for the whole model) can be found in the last column of table 1.

5.3. Evaluation metrics

We used the Matthew correlation coefficient (MCC) to measure the classification perfor-
mances of the models (well-suited for imbalanced datasets), and SRQW , CRT

G and CRQ
G

to measure the compression performances. Finally, experiments 1 and 3 were repeated 10
times, and experiment 2 was repeated 5 times for statistical purposes, and the reported
metrics correspond to the mean computed on the test sets.

5.3.1. Experiment 1: Comparison with trained ternary quantization (TTQ)

The objective of this experiment is to compare the performance of the proposed quantization
heuristic, aTTQ, with respect TTQ. This comparison is done with respect to two main

8. For details about the network architectures, we refer the reader to (Vindas et al., 2022b), appendix C or
the GitHub repository.

10



Asymmetric trained ternary quantization for model compression

Table 1: Training parameters for the different models based on the dataset and the used
ternarization method. In the last column, we specified the percentage of weights of
the model that are going to be quantized, selected using the Hessian-based metric
in section 3.3.

Dataset Model
Quant.

tmin tmax
Learning

Epochs
No. % weights

method rate params. to quantize

HITS

2D CNN
FP - - 10−3 50

1 681 923
-

TTQ - - 3× 10−3 50
92.05

aTTQ −4 0 10−4 150

1D CNN-trans.
FP - - 7× 10−2 150

766 271
-

TTQ - - 10−4 50
14.97

aTTQ −2 1.5 5× 10−5 100

ESR

2D CNN
FP - - 10−3 100

1 555 842
-

TTQ - - 10−3 50
99.51

aTTQ −3 1 10−3 200

1D CNN-trans.
FP - - 3× 10−1 100

109 942
-

TTQ - - 10−3 100
24.22

aTTQ −2 1 5× 10−4 100

MNIST 2D MNIST CNN
FP - - 10−3 70

9 840
-

TTQ - - 10−4 200
53.35

aTTQ −1 0.5 10−3 200

aspects: classification performance and the compression performance. The results can be
found in table 2 and figure 2.

First, we can note that, in terms of compression and sparsity metrics, aTTQ outperforms
TTQ by a large margin. Indeed, in terms of sparsity, aTTQ improves the sparsity rate of
the quantized weights (SRQW) of at least 2.7% (and up to 86.8%) with respect to TTQ.
Indeed, this sparsity rate is over 13 times larger for aTTQ for the 1D CNN-transformer
model trained on the HITS dataset, passing from 6.75% for TTQ to 93.58% for aTTQ.
What is more, similar results are observed for the compression rate gain of the quantized
layers, CRQ

G. However, even though a similar behavior is observed for the compression rate
gain of the whole model, the increase of aTTQ with respect to TTQ are smaller.

Second, compared to the full precision model, TTQ and aTTQ achieve similar classi-
fication performances. Indeed, for the HITS dataset, we observe a maximum MCC drop
with respect to the FP model of 3.70% and 3.02% for aTTQ and TTQ respectively. On
the contrary, for the 1D-CNN transformer models on the ESR dataset, we note an MCC
increase of 1.01% and 1.92% for aTTQ and TTQ, respectively.

Finally, we can observe that, improving the compression rate with aTTQ comes at
the cost of a classification performance drop. However, this performance drop is of the
same order as with TTQ for most of the datasets and models. Globally, TTQ weakly
exceeds aTTQ on almost all the datasets, for almost all the models in terms of classification
performance, with an MCC margin going from 0.68% to 2.77%. This is not true for the 2D
CNN in the MNIST dataset, where aTTQ outperforms TTQ by a MCC margin of 1.53%.
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Table 2: Results of experiment 1, in %. FP corresponds to the full-precision model where
no quantization has been done. ∆MCC corresponds to the difference between
the MCC of the full precision model and the MCC of the quantized model. CRT

G,

and CRQ
G evaluate the compression performance of each quantization method and

were introduced in 3.4.

Dataset Model Quant. method Norm. CRT
G ↑ CRQ

G ↑ MCC ↑ ∆ MCC ↑

HITS

2D CNN
FP No - - 89.84± 3.09 -
TTQ

Yes
24.96± 2.25 27.12± 2.44 86.82± 2.29 −3.02

aTTQ 42.98± 0.23 46.69± 0.25 86.14± 3.37 −3.70

1D CNN-trans.
FP No - - 82.64± 1.77 -
TTQ Yes 0.14± 0.04 0.91± 0.27 83.22± 2.36 +0.58
aTTQ No 13.94± 0.02 93.17± 0.16 81.66± 4.17 −0.98

ESR

2D CNN
FP No - - 92.81± 3.53 -
TTQ Yes 85.61± 1.37 86.03± 1.37 95.00± 1.11 +2.19
aTTQ No 88.48± 0.44 88.91± 0.45 92.41± 2.22 −0.40

1D CNN-trans.
FP No - - 94.33± 1.51 -
TTQ Yes 11.40± 2.61 47.07± 10.79 96.25± 0.79 +1.92
aTTQ No 21.02± 0.15 86.78± 0.63 95.34± 0.79 +1.01

MNIST 2D MNIST CNN
FP No - - 94.39± 0.46 -
TTQ Yes 13.86± 2.33 25.97± 4.37 92.09± 0.89 −2.30
aTTQ No 28.98± 1.26 54.32± 2.36 93.62± 0.96 −0.77

5.3.2. Experiment 2: Influence of tmin and tmax

The objective of this experiment is twofold: (1) show the interest of using asymmetric
thresholds, and (2) study the influence of the hyperparameters tmin and tmax of aTTQ on
the performances of the models. To do this, we trained the 2D CNN model of experiment 1
on the subset of the MNIST dataset, and the 1D CNN-transformer model of the same experi-
ment on the ESR dataset, varying the values of x and y in {−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2}.
The results can be found in figure 3.

First, we can observe that, the best classification performances are not obtained for
symmetrical values of tmin and tmax. Indeed, for both models on both datasets, the best
results are obtained when tmin ≤ 0 and tmax ≥ 0, achieving 93.56% MCC for the 2D CNN
on the MNIST dataset, and 95.09% MCC for the 1D CNN-transformer on the ESR dataset.
What is more, the best SRQW values are also obtained for the same ranges of (asymmetric)
values of tmin and tmax.

Moreover, we observe a trade-off between compression and classification performance as
the best performing models in terms of MCC are not the ones having the higher SRQW
(thus the higher compression rate). In terms of sparsity, the higher the gap between tmin

and tmax the higher the sparsity (larger range of weights values that maps to zero). When
this gap is large enough, the classification performance is often worse than smaller gaps
(translating in smaller sparsity rates).

Finally, it is interesting to note that, small sparsity rates (small gap between tmin and
tmax) do not always give models with the highest classification performances. Indeed,
we observe that models with a sparsity rate close 0% tend to give models with worse
classification performances than higher sparsity rate models.
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Figure 2: Results of experiment 1. We show the sparsity rates of the quantized weights,
SRQW, in %. The blue boxes correspond to the full-precision model (FP), where
none of the weights to quantized are set to 0 (so 0% if SRQW). The red and green
curves correspond to the TTQ and aTTQ models, respectively.

5.3.3. Experiment 3: Influence of weight normalization

The objective of this experiment is to study the influence of normalization on the perfor-
mances of the proposed aTTQ ternarization method. To do this, we ternarize all the models
presented in experiment 1 with and without normalization of the weights to quantize. Re-
sults can be found in table 3.

First, we can notice that, for most of the datasets and models with or without nor-
malization, the classification performances are similar. More interestingly, for the 2D CNN
models trained on the ESR and MNIST datasets, the use of normalization have a large neg-
ative impact on the classification performances, with a gap of at least 84.16% in terms of
MCC between the non-normalized and normalized models. However, on the HITS dataset,
the 2D CNN quantized model with normalization outperforms the one without normaliza-
tion by a margin of 0.69% in terms of MCC, while the compression performances remain
the same. Finally, for all the datasets and models, normalization do not have a significant
impact on the compression performances, as the different metrics are almost identical for
both normalized and non-normalized models
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(a) (b)

(c) (d)

Figure 3: Results of experiment 2. (a) MCC for the 2D CNN model trained on the MNIST
dataset. (b) SRQW for the 2D CNN model trained on the MNIST dataset. (c)
MCC for 1D CNN-transformer model trained on the ESR dataset. (d) SRQW for
1D CNN-transformer model trained on the ESR dataset. The x-axis corresponds
to the different tested values of tmin and the y-axis to the different values of tmax.
All the values are given in %.

6. Discussion

Experiment 1: Comparison with trained ternary quantization (TTQ). The re-
sults of experiment 1 confirm the interest of our quantization approach, aTTQ, in terms
of compression and classification, with respect to TTQ. Our method always outperforms
TTQ by a large margin in terms of compression and sparsity rates, even though it often
has slightly smaller classification performances than TTQ. Therefore, aTTQ offers a better
trade-off between classification and compression performances. Indeed, in some cases, a
slight decrease in the classification performance can be justified by lighter models. A good
example are (medical) embedded applications, where, if the best model does not fit in the
device, the good (not the best) classification performances, are relevant.

Furthermore, we can note that, for the used compression metrics, the observed increase
in the performances is not the same for all the metrics. Indeed, the compression metrics
focusing only on the layers that are quantized are often significantly higher than the com-
pression metric using all the layers in the model. This can be explained by the fact that the
quantized layers do not always have the majority of the parameters of the model. There-
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Table 3: Results of experiment 3. The normalization column indicates if normalization of
the weights by the maximum of the absolute value of the weights was performed
before quantization. CRQ

G evaluate the compression performance of each quanti-
zation method and were introduced in 3.4.

Dataset Model Normalization MCC ↑ CRQ
G ↑

HITS
2D CNN

No 85.45± 3.33 46.69± 0.25
Yes 86.14± 3.37 46.69± 0.25

1D CNN-trans.
No 81.66± 4.17 93.11± 0.16
Yes 80.45± 3.59 93.17± 0.16

ESR
2D CNN

No 92.41± 2.22 88.91± 0.45
Yes 8.25± 13.47 88.95± 0.58

1D CNN-trans.
No 95.34± 0.79 86.78± 0.63
Yes 95.40± 0.73 86.77± 0.62

MNIST 2D MNIST CNN
No 93.62± 0.96 54.32± 2.36
Yes 0± 0 60.36± 3.01

fore, even if all the parameters of those layers are removed, the compression will not be
significant.

Finally, we can see that, in some cases, the classification performances can be increased
after quantization. This can be justified by three factors. The first factor is that sparsity can
act as regularization, as several works have shown it (Hoefler et al., 2022). The second factor
is that quantization can also help regularization, as deep neural networks are highly over-
parametrized and redundant. At last, the quantized models are obtained from pre-trained
full precision models, and the chosen layers to quantized are based on a hessian-based
quantization sensitivity metric. Therefore, the fine-tuning quantization step could help the
models to get closer to a local minimum, as the loss landscape should be relatively flat for
the chosen layers to quantize.

Experiment 2: Influence of tmin and tmax. The results of experiment 2 showed the
importance of the asymmetric pruning as well as the importance of the choice of tmin and
tmax for aTTQ.

Indeed, the results showed that asymmetric thresholds obtained through asymmetric
values of tmin and tmax allow achieving better classification performances than symmetric
thresholds tmin = −tmax, while still achieving a good sparsity rate for the quantized weights.
This can be explained by the fact that, within a neural network, positive and negative
values of the weights do not necessarily have the same impact on the final classification
performances. Moreover, when normalization is not done, the minimum and maximum
values of the weights are not necessarily opposites, so the two thresholds should be adapted
to this situation.

What is more, the results also show the trade-off existing between classification perfor-
mance and model compression through sparsity. In fact, very high sparsity rates tend to
lead to a decrease in the classification performances. However, this decrease is not always
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significant, whereas the gain in sparsity rate of the quantized layers is. Therefore, based
on the application, if memory requirements are an important factor, higher sparsity rates
could be chosen despite the reduction in classification performances. In our case, we de-
cided to choose the models giving the higher classification performance, without taking into
account the sparsity rates, but this selection strategy can be adapted based on the targeted
application. This is an advantage of our method as the two hyperparameters tmin and tmax

allows controlling this trade-off between compression and classification performances.
Finally, we can notice the regularization effect of sparsity thanks to figure 3. Indeed,

when the sparsity rate of the quantized weights increases, the classification performance
tends to increase up to a certain point, when the classification performance starts decreasing.

Experiment 3: Influence of weight normalization Experiment 3 shows the influence
of weight normalization on our proposed method, aTTQ. The results showed that, for
almost all the models and datasets, better or similar classification performances are obtained
when the model’s weights to quantize are not normalized, and this without degrading the
compression performances. What is more, the only case where normalization outperform
non-normalization, was the case of the 2D CNN model trained on the HITS dataset (margin
of 0.69% in terms of MCC). Therefore, we recommend using our method without prior
normalization of the weight to quantize.

Limitations. In this work we showed the advantage of our aTTQ approach, over classical
TTQ, especially in terms of compression. However, our method have some limitations. First,
it is difficult to choose tmin and tmax to match a prescribed trade-off between classification
performance and compression rate. Second, in order to take advantage of the compressed
methods in terms of energy consumption and inference time, specialized hardware has to be
designed to perform energy and inference efficient operations with the obtained quantized
model. Finally, as we do extreme quantization, our approach is not applicable to all the
layers of a given model without important classification performance degradation.

7. Conclusion

In this paper, we proposed to modify the quantization heuristics of trained ternary quan-
tization (TTQ), in order to improve the trade-off between classification performance and
compression rate. Indeed, instead of using symmetric thresholds for the positive and neg-
ative weights to quantize, we propose to use asymmetric thresholds computed using the
weights’ statistics (mean and standard deviation) and two hyperparameters, tmin and tmax,
controlling the sparsity rate of the quantized weights. Extensive experiments on three
datasets and two types of models, demonstrate the effectiveness of our method, being able
to improve the compression performances up to 92.26% in terms of CRQ

G (compression
rate gain of the layers selected for quantization), with similar classification results as TTQ
(degradation of 1.56% in terms of MCC).

In future work, we plan to develop specialized hardware to efficiently do the operations
needed by our quantized (sparse) models, allowing to accelerate inference and reduce en-
ergy consumption in practice. Moreover, to increase model compression and reduce energy
consumption, we plan to use mixed quantization to quantize the entire model, without
important degradation of the classification performances.
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regional, and national burden of neurological disorders, 1990-2016: a systematic analysis

17

https://proceedings.neurips.cc/paper/2020/file/d77c703536718b95308130ff2e5cf9ee-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d77c703536718b95308130ff2e5cf9ee-Paper.pdf


Asymmetric trained ternary quantization for model compression

for the global burden of disease study 2016. The Lancet Neurology, 18:459–480, 05 2019.
doi: 10.1016/S1474-4422(18)30499-X.

Asghar Gholami, Sehoon Kim, Dong Zhen, Zhewei Yao, Michael Mahoney, and Kurt
Keutzer. A Survey of Quantization Methods for Efficient Neural Network Inference,
pages 291–326. 01 2022. ISBN 9781003162810. doi: 10.1201/9781003162810-13.

Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and T. N. Vijaykumar. Sparten:
A sparse tensor accelerator for convolutional neural networks. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’52,
page 151–165, New York, NY, USA, 2019. Association for Computing Machinery.
ISBN 9781450369381. doi: 10.1145/3352460.3358291. URL https://doi.org/10.1145/

3352460.3358291.

Yunchao Gong, L. Liu, Ming Yang, and Lubomir D. Bourdev. Compressing deep convolu-
tional networks using vector quantization, 2014.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding. In Yoshua Bengio and
Yann LeCun, editors, 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1510.00149.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl
for model compression and acceleration on mobile devices. In Vittorio Ferrari, Martial
Hebert, Cristian Sminchisescu, and Yair Weiss, editors, Computer Vision – ECCV 2018,
pages 815–832, Cham, 2018. Springer International Publishing. ISBN 978-3-030-01234-2.

Anwer Mustafa Hilal, Amani Abdulrahman Albraikan, Sami Dhahbi, Mohamed K. Nour,
Abdullah Mohamed, Abdelwahed Motwakel, Abu Sarwar Zamani, and Mohammed
Rizwanullah. Intelligent epileptic seizure detection and classification model using op-
timal deep canonical sparse autoencoder. Biology, 11(8), 2022. ISSN 2079-7737.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Spar-
sity in deep learning: Pruning and growth for efficient inference and training in neural
networks. J. Mach. Learn. Res., 22(1), jul 2022. ISSN 1532-4435.

Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally,
and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and
¡1mb model size. ArXiv, abs/1602.07360, 2016.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

Hyeji Kim, Muhammad Umar Karim Khan, and Chong-Min Kyung. Efficient neural net-
work compression. In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 12561–12569, 2019. doi: 10.1109/CVPR.2019.01285.

18

https://doi.org/10.1145/3352460.3358291
https://doi.org/10.1145/3352460.3358291
http://arxiv.org/abs/1510.00149


Asymmetric trained ternary quantization for model compression

Gary King and Langche Zeng. Logistic regression in rare events data. Political Analysis, 9:
137–163, Spring 2001.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http:

//yann.lecun.com/exdb/mnist/.

Fengfu Li and Bin Liu. Ternary weight networks. ArXiv, abs/1605.04711, 2016.

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional
neural networks: Analysis, applications, and prospects. IEEE Transactions on Neural
Networks and Learning Systems, 33(12):6999–7019, 2022. doi: 10.1109/TNNLS.2021.
3084827.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep
neural network compression. pages 5068–5076, 10 2017. doi: 10.1109/ICCV.2017.541.

Franco Manessi, Alessandro Rozza, Simone Bianco, Paolo Napoletano, and Raimondo
Schettini. Automated pruning for deep neural network compression. 12 2017.

Consensus Committee of the Ninth International Cerebral Hemodynamic Symposium. Basic
identification criteria of doppler microembolic signals. Stroke, 26(6):1123, 1995.

World Health Organization. Neurological disorders: public health challenges. World Health
Organization, 2006.

Mi Sun Park, Xiaofan Xu, and Cormac Brick. Squantizer: Simultaneous learning for both
sparse and low-precision neural networks. CoRR, abs/1812.08301, 2018. URL http:

//arxiv.org/abs/1812.08301.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Francesco Piccialli, Vittorio Di Somma, Fabio Giampaolo, Salvatore Cuomo, and Gian-
carlo Fortino. A survey on deep learning in medicine: Why, how and when? In-
formation Fusion, 66:111–137, 2021. ISSN 1566-2535. doi: https://doi.org/10.1016/
j.inffus.2020.09.006. URL https://www.sciencedirect.com/science/article/pii/

S1566253520303651.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Im-
agenet classification using binary convolutional neural networks. In Bastian Leibe, Jiri
Matas, Nicu Sebe, and Max Welling, editors, Computer Vision – ECCV 2016, pages
525–542, Cham, 2016. Springer International Publishing. ISBN 978-3-319-46493-0.

M. Rosenkranz, J. Fiehler, W. Niesen, C. Waiblinger, B. Eckert, O. Wittkugel, T. Kucinski,
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Table 4: Distribution of the HITS per class and per subject (subjects 0 to 19). The HITS are
classified using three classes: solid embolus, gaseous embolus, and artifact. Some
HITS cannot be classified by one expert annotator in one single class, so they
are labeled as unknown (these are not used to train or evaluate the classification
models). This happens mainly between solid and gaseous emboli, or between small
intensity solid emboli and artifacts.

Subject ID Solid embolus Gaseous embolus Artifact Unknown Total

0 0 123 15 1 139

1 24 3 1 0 28

2 0 72 0 0 72

3 11 0 46 0 57

4 1 0 0 0 1

5 2 0 0 0 2

6 0 0 48 0 48

7 3 0 0 0 3

8 56 0 0 0 56

9 1 0 54 0 55

10 0 4 0 0 4

11 1 0 0 0 1

12 0 15 0 0 15

13 0 76 0 0 76

14 2 0 0 0 2

15 5 0 46 0 51

16 3 0 0 0 3

17 14 0 4 0 18

18 2 0 0 0 2

19 0 54 0 0 54

Appendix A. Distribution of HITS per class and per subject.
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Table 5: Distribution of the HITS per class and per subject (subjects 20 to 38). The HITS
are classified using three classes: solid embolus, gaseous embolus, and artifact.
Some HITS cannot be classified by one expert annotator in one single class, so they
are labeled as unknown (these are not used to train or evaluate the classification
models). This happens mainly between solid and gaseous emboli, or between small
intensity solid emboli and artifacts.

Subject ID Solid emboli Gaseous embolus Artifact Unknown Total

20 0 7 0 0 7

21 20 0 0 0 20

22 0 0 1 0 1

23 17 0 0 0 17

24 1 0 0 0 1

25 1 0 0 0 1

26 1 0 0 0 1

27 45 6 0 0 51

28 268 2 48 0 318

29 42 181 0 3 226

30 0 7 0 0 7

31 24 0 0 0 24

32 7 1 4 0 12

33 0 0 48 0 48

34 0 0 34 0 34

35 17 0 0 0 17

36 1 0 15 0 16

37 0 4 0 0 4

38 0 14 39 0 53
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Table 6: HITS population characteristics computed with the available information. F
stands for female, M for male, and U for unknown.

Sex Number Median Age Range Age Mean n° HITS/min

F 19 69 24-85 4,55
M 15 56 21-81 3,98
U 5 74.5 71-78 4,45

All 39 63 21-85 4,32

Table 7: Number of samples per class in the ESR dataset (Andrzejak et al., 2002). The
class 1 corresponds to a seizure activity recording. Classes 2-5 corresponds to non
seizure activity. In class 2, the sample was obtained from a tumor area in the
brain. Class 3 corresponds to a sample coming from a healthy area of the brain.
Class 4 corresponds to an EEG sample obtained for a patient that was closing
their eyes. Class 5 corresponds to an EEG sample obtained for a patient with its
eyes openend.

Class Number of samples

1

2300
2
3
4
5

Appendix B. Distribution of ESR samples
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Figure 4: 2D CNN architecture used for the HITS and ESR dataset, taking as input a time-
frequency representation of the raw signal. Image from (Vindas et al., 2022b).

Figure 5: 1D CNN-transformer architecture used for the HITS and ESR dataset, taking as
the normalized raw signal. Image from (Vindas et al., 2022b).

Appendix C. Used network architectures details
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