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Chloé Murtin1,2,3, Carole Frindel3, David Rousseau3, Kei Ito1,2

1 Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi,
Bunkyo-ku, 113-0032 Tokyo, Japan.

2 Department of Computational Biology, Graduate School of Frontier Sciences, The
University of Tokyo, Kashiwanoha, Kashiwa, 277-0882 Chiba, Japan.

3 CREATIS, Institut National des Sciences Appliquées de Lyon (INSA Lyon), 7 avenue J
Capelle, bat. Blaise Pascal, F-69621 Villeurbanne cedex, France.

4 Institut für Zoologie, Universität zu Köln, Zülpicher Str. 47b, 50674 Köln, Germany.

Abstract

The possible depth of imaging of laser-scanning microscopy is limited not only by

the working distances of objective lenses but also by image degradation caused

by attenuation and diffraction of light passing through the specimen. To tackle

this problem, one can either flip the sample to record images from both sides of

the specimen or consecutively cut off shallow parts of the sample after taking

serial images of certain thickness. Multiple image substacks acquired in these

ways should be combined afterwards to generate a single stack. However, subtle

movements of samples during image acquisition cause mismatch not only in the

translation along x-, y-, and z-axes and rotation around z-axis but also tilting

around x- and y-axes, making it difficult to register the substacks precisely. In

this work, we developed a novel approach called 2D-SIFT-in-3D-Space using

Scale Invariant Feature Transform (SIFT) to achieve robust three-dimensional

matching of image substacks. Our method registers the substacks by separately

fixing translation and rotation along x-, y-, and z-axes, through extraction and

matching of stable features across two-dimensional sections of the 3D stacks. To
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validate the quality of registration, we developed a simulator of laser-scanning

microscopy images to generate a virtual stack in which noise levels and rota-

tion angles are controlled with known parameters. We illustrate quantitatively

the performance of our approach by registering an entire brain of Drosophila

melanogaster consisting of 800 sections. Our approach is also demonstrated to

be extendable to other types of data that share large dimensions and need of

fine registration of multiple image substacks. This method is implemented in

Java and distributed as ImageJ/Fiji plugin. The source code is available via

Github (http://www.creatis.insa-lyon.fr/site7/fr/MicroTools).

Keywords: stitching; registration; SIFT; laser-scanning microscopy; brain;

connectomics; Drosophila.

1. Introduction

Laser-scanning fluorescent microscopy is a powerful tool for analyzing three-

dimensional (3D) complex structures found in life sciences such as neuronal

structures, which can be visualized using fluorophore-conjugated antibody la-

beling or targeted-expression of fluorescent proteins [1]. Combinations of mul-5

tiple fluorescent markers and excitation filters can be used to highlight various

neuronal objects, e.g., axons as well as pre- and postsynaptic sites, in the same

specimen [2]. Such imaging techniques promise to give access, for instance in

neurology, to connectomics which aims to produce a comprehensive and system-

atic analysis of the connections between brain regions and between numerous10

neurons within them [3]. The success of such analysis depends on the capacity

to acquire in great detail, i.e., at the scale of the synapsis, the entire volume of

the brain specimen.

Although laser-scanning microscopy can acquire images of thin optical sec-

tions from thick tissues [4], the possible depth of imaging is limited by three15

factors. First, the working distance of the microscope objective limits the depth

for which images can be recorded. Second, signals become darker in deeper

regions of the samples, because both excitation laser beam and emitted fluo-
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rescence are attenuated by the sample tissue that is optically not completely

translucent [5]. This causes diminution of signal intensity and signal-to-noise20

ratio. And third, image quality degrades in deeper regions even when it is still

within the working distance of the lens. Although new techniques such as clear-

ing agents (e.g., CLARITY and Scale) can make sample tissues transparent

[6, 7], light rays are deflected and scattered when they pass through tissues.

Deep objects therefore appear blurry and lose contrast.25

Thus, spatial resolution decreases with the depth from the sample surface.

Even with the objectives with high numerical aperture and long working dis-

tance (more than 200 µm), image quality decreases considerably when the focal

plane becomes as deep as 100 µm [8]. Two workaround techniques have been

employed to overcome this problem. For the specimen that is thinner than 30030

µm along the optical axis (z-axis), it is possible to record the image from both

sides of the sample that is embedded between thin cover slips. The first im-

age substack covering the frontal half of the sample is taken from one side of

the cover slip. The sample is then flipped, and the second image substack is

recorded from the other side. For a thicker specimen, the sample can be em-35

bedded in a soft medium and using tissue sectioning (e.g., vibratome), a sample

section is cut off from the top of the sample block after taking image stacks

of this section. By repeating this procedure, called two-photon tomography, in

principle any thick specimen can be imaged [9, 10].

In both approaches, image substacks should be acquired in an overlapping40

manner: the overlapping sections will serve as a guide indicating how neighbor-

ing substacks can be concatenated, or stitched. However, such concatenation

is not straightforward, because small rotation and translation can occur when

the sample is flipped or when the block surface is cut off. Rotation can occur

not only around the z-axis of the specimen but also around x- and y-axes (tilt-45

ing). Moreover, because of the photobleaching that occurs during image stack

acquisition and because of the different depths from the sample surface, the

intensity of the corresponding optical sections in two overlapping stacks often

appear different.
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This is why registration is crucial for properly stitching image substacks of50

the same sample. Each neuronal fiber from neighboring stacks must be perfectly

connected to each other after stitching. A discontinuity in the final image stack

would strongly affect further analysis such as neuron tracing [11, 2, 12]. Regis-

tration is one of the most important general problems of image processing [13].

Therefore, there exists a wide offer of commercial or free, manual or automated,55

2D or 3D, software platforms that address this issue. Application specific solu-

tions, however, that are relevant for common types of samples and acquisition

protocols, are often difficult to access for life scientist. Such a perspective could

be judged as relatively narrow in a general computer vision context. However,

as recently illustrated in this journal [14, 15, 16, 17], it is actually specifically60

meaningful in biomedical imaging where important communities of life scientists

work on the same types of samples.

In this study, we have developed an optimized automatic registration and

stitching algorithm, 2D-SIFT-in-3D-Space, specifically adapted for thick high-

resolution laser-scanning microscopy image stacks. A visual flow chart of the65

proposed algorithm is given in Fig. 1. We applied our method to stitch large

3D image stacks of Drosophila melanogaster brain samples that can be mutu-

ally tilted by up to 20 ◦. Our algorithm, made available under the open source

Fiji software that is widely used through the international bioimaging commu-

nity, combines several existing approaches into a new strategy based on reliably70

detecting features in images using scale invariant feature transform (SIFT).

In addition, to validate quantitatively the registration quality, we developed

an original simulator that generates artificial 3D image stacks that mimic the

properties of noise in laser scanning microscopy. We have used 2D-SIFT-in-

3D-Space algorithm to assemble 3D image stacks of neurons of the Drosophila75

brain at a voxel resolution of 0.2 x 0.2 x 0.2 µm (1600 x 1600 voxels and 800

sections). The stitched dataset serves as a starting point for characterizing fine

architecture of such large entire brain at unprecedented resolution but the 2D-

SIFT-in-3D-Space is also shown to be useful to other types of datasets and other

fluorescent microscopy systems (see supplementary data).80
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Figure 1: Flow chart of the proposed automatic registration and stiching algorithm 2D-SIFT-

in-3D Space.

2. Related work

The primary purpose of the proposed registration method, 2D-SIFT-in-3D-

Space, is to stitch two image substacks. The registration is achieved by com-

paring the signals of two overlapping image stacks. In this context, it shares

some similarities with existing registration algorithms known to be adapted to85

the bioimaging community interested in the registration of 3D images. A pos-

sible classification for image registration approaches is whether the registration

is based on intensity or on features [18].

Intensity-based approaches confront, with a correlation metric, the intensity

patterns in images to be registered. This includes for instance software solu-90

tions such as CMTK (Computational Morphometry Toolkit), elastiX, ANTS,

AMIRA). Intensity-based approaches are specifically suited when the homolo-

gous structures to be registered in the 3D stacks are well represented by the

intensities through the spatial statistics of the gray levels seen as a random

variable (see for instance in spatial intensity [19], or with Fourier transform of95

the intensities [20], or also as recently used in [21]).
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Feature-based approaches, as chosen and developed in this article, realize a

correspondence between homologous landmarks in the images to be registered.

Feature-based approaches are specifically suited when the images are charac-

terized by spurious small structures (e.g., vessels and blobs) such as the one100

highlighted in the samples of neuronal fiber images considered in this article.

Feature-based approaches works in two steps: First the detection of landmarks

and second the match of the homologous landmarks in the images. In some

software solutions the landmarks have to be detected with another software

or selected manually. Manual positioning of such landmarks can be very time105

consuming and can also be perturbed by human errors. To circumvent this

difficulty automatic detection of homologous landmarks is preferred. This can

be achieved by detecting fiducial structures of known shape and size such as

fluorescence beads that are purposely added to the sample [22] or endogenous

granules in the tissue [23]. Registration error, however, would occur if samples110

and added beads were put in fluid mounting medium such as glycerol used in our

study. Whereas [23] utilized endogenous aging-related pigment granules that are

distributed across the mouse neural tissue, similar approach was not applicable

to our samples because such granules do not seem to be distributed ubiquitously

in young fly brains. Automatic detection of homologous landmarks can also be115

done purely numerically based on the extraction of local image features (See

[24] for a review). The great advantage of feature-based registration is that

instead of using all image intensities, it is possible to register two stacks using

only corresponding salient points as a statistic of the image content. Reducing

the problem from full resolution image content to a relatively small number of120

corresponding homologous points simplifies the estimation of the transformation

model and is a major computing time saver.

Feature-based and intensity-based techniques have been shown to be useful

for registering image stacks of different tissue samples as well as for stitching

sections and image substacks of a single tissue. Software designed for the stitch-125

ing purpose tends to assume that all the sections are parallel without tilting

(e.g., [20]) and do not correct rotation mismatches around all axes (see Sup-
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plementary data for a comparison with our solution). Software designed for

the registration purpose can generally correct rotation and translation in all 3D

axes, but many of them are designed for registering image stacks that cover130

the same part of the specimen in different samples. To operate on the type of

data considered in this article, one would require two image processing steps:

first the manual crop of the overlapping part and second the stitching of the en-

tire registered stacks. Effective manual crop may appear trivial for the samples

with small tilting angles, but is actually a difficult task for large angles when135

dealing with self-similar samples such as the neurons in the brain. The exist-

ing techniques are, to the best of our knowledge, not natively capable of joint

automatic detection of the overlap and registration and stitching of 3D image

substacks that overlap only partially as found with the thick samples imaged

with high-resolution laser-scanning microscopy.140

To stitch image substacks with tilting errors, we propose a solution with an

original use of a popular local feature SIFT introduced by [25]. Whereas we

achieved 3D registration with the repeated use of 2D SIFT in three orthogonal

planes, SIFT in true 3D space has also been proposed for motion recognition

of video images [26], object recognition for X-ray computer tomography images145

[27], or in biomedical applications [28, 29, 30, 31]. Although the same approach

can in principle be applied to develop an image registration software, the choice

of 2D-SIFT-in-3D-Space is well adapted in our case, because the specific image

acquisition sequence considered in this article stitching of microscope image

substacks obtained from the same sample induces more important rotations150

around z-axis than the tilting around other axes; the first iteration of registration

in x-y plane is thus very likely to bring a strong improvement. This prior would

not be used with 3D SIFT registration, which would blindly look for solutions

in any direction of the 3D space.
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3. Materials and Methods155

3.1. Definition of the biological task

As a model system, we used the brain of the adult fruit fly Drosophila

melanogaster. It contains about 100,000 neurons in the volume that is approx-

imately 600-µm wide, 300-µm tall, and 160-µm thick. The fly brain has been

an intense focus for brain-wide analysis of neural networks and their functions160

[32, 3, 33]. Projection patterns of neuronal fibers and distribution of synaptic

connection sites can be visualized by expressing proteins that are spread along

cytoplasm and those that are transported to presynaptic sites [32]. A wide

variety of neuron types can be visualized using cell-specific expression driver

strains [1]. Among them the dopaminergic and octopaminergic neurons – which165

are known to be involved in diverse brain functions – form extensive projec-

tions in almost all the brain regions [34, 35]. Because those neurons feature

complex arborizations that are much denser and finer than most other neuron

types (Fig. 2), high-resolution microscopy images are required. To this aim, im-

ages of the fluorescent antibody-labeled samples were recorded using confocal170

laser-scanning microscopes (Olympus FV1000 and FV1200) with a 40x silicon

immersion objective (NA=1.25) at an image resolution of 0.2 x 0.2 x 0.2 µm

each, in total 1600 x 1600 pixels and approximately 800 serial sections.

Image quality degrades as the plane of the scanning optical section goes

deeper into the specimen (Fig. 3) even with high-resolution objective lenses175

that are designed to match the refraction index of the mounting medium. Thus,

although the total thickness of the samples (Ca. 160 µm) is well within the

working distance of the objective lens (Ca. 280 µm), deeper half of the samples

cannot be recorded with optimum resolution if they are imaged only from one

side. To address this issue, we mounted the specimen between thin cover slips on180

both sides with a space of 200-µm thickness, and the deeper half of the sample

is recorded from the other side by flipping the preparation (Fig. 4). The two

substacks, taken from the front and back sides of the brain, were then merged

after flipping the volume data of the back substack.
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Figure 2: Spatial arborization of dopaminergic neurons (a) and octopaminergic neurons (b)

of the adult Drosophila melanogaster brain. 3D reconstruction of the entire stack after front

and back substacks are registered and merged. 1600 x 1600 x 800 voxels, voxel resolution =

0.2 x 0.2 x 0.2 µm. Scale bar = 50 µm.

Figure 3: Difference in image quality along z-axis for the labeled fibers located in the area

close to the sample surface (a: depth 30-40 µm) and rather deep in the specimen (b: 80-90

µm). Note that not only brightness but also sharpness is decreased. Scale bar = 10µm.
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Figure 4: Image stacks acquisition. (a) A schematic view of the fly brain seen anterior-

obliquely. (b) Optical sections of the front substack are acquired from the frontal surface of

the brain toward its mid-level. (c) After flipping the sample on the microscope stage, images of

the back substack are acquired from the back surface of the brain toward mid-level. (d) Image

registration: the back substack is flipped and fused with the front one. (e-g) The sample is

mounted between two thin cover slips. (e) Support plate for image acquisition. Glass spacers

are put on both sides of the slide glass. (f) Front substack acquisition. The sample sandwiched

between coverslips is put on the spacers. The space between the back coverslip and the slide

glass avoids the occurrence of Newton ring that occurs when two glass material contact each

other. (g) The sample is flipped for back substack acquisition.
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This approach works well if the samples are mounted in rigid medium and if185

the sample after flipping can be placed exactly at 180◦ from the original direc-

tion. However, fluorescent samples are often mounted in a fluid substrate such

as 80% glycerol, in which the specimen are not completely fixed but stay afloat.

Slight rotation may therefore occur when the samples are flipped. In addition,

because of the instrumental error, the two cover slips may not completely be in190

parallel, causing the flip not to be exactly at 180◦. Such error would not cause

severe problems if the images were taken at relatively low resolution. However,

to reconstruct fine neuronal fibers which are often thinner than 0.5 µm, even

subtle misalignment results in discontinuity such as gaps, if the substacks are

concatenated without fine three-dimensional registration (Fig. 5).195

Figure 5: Importance of registration to avoid discontinuity in the final 3D image stack. Oblique

view of the 3D reconstruction after concatenation of substacks. (a) Concatenation without

fine registration. Gaps and seems (dotted circle) are observed in the neural fibers that should

be continuous at the boundary between the front and back substacks (dotted line). (b)

Concatenation after fine registration. Fibers appear continuous.
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3.2. 2D-SIFT-in-3D-Space Algorithm

Our registration and stitching algorithm consists of several steps (Fig. 6):

(1) the overlap detection in the two data substacks, (2) partial maximum in-

tensity projection (MIP), (3) filter selection, (4) SIFT features extraction and

correspondence detection, (5) affine transformation parameters estimation and200

(6) registered overlapping portions fusion. The details of all the steps will be

described in the following sections.

Figure 6: Control panel of the 2D-SIFT-in-3D-space Volume Stitching plugin, implemented

for ImageJ/Fiji. See main text for detail.

Overlap detection. This step aims to find the portions of the two image sub-

stacks containing overlapping image data. To do so, we compare the image
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content across sections of the two substacks using SIFT features (see Fig. 7a1-205

2). For each section comparison, the number of corresponding SIFT features

is stored which allows the computation of the correspondence curve where the

overlap positions are detected with the highest peak of the correspondence curve

(see Fig. 7a3-4). To detect the overlap, we proposed two alternative approaches.

The first approach performs a slice-by-slice comparison: the last section of the210

front substack is compared to each section of the back substack along the z-axis

(Fig. 7a). The overlap positions are detected with the highest peak of the cor-

respondence curve, in other words the section of the back substack with most

common information with the last section of the front substack. This approach

is based on the assumption that tilting between the planes of the two substacks215

is usually small enough to find important similarities between substack sections

of the corresponding depths within the overlap. However, slice-by-slice compar-

ison requires long computation time on substacks made of numerous sections.

Moreover, when the tilting between the two substacks is big, similarity between

sections is often not sufficient for identifying corresponding sections. For those220

reasons, we developed an alternative approach, block-by-block comparison (Fig.

7b) using partial MIP presented in the following section.

Partial MIP. In this approach, we split the two entire substacks into several

blocks and make the maximum intensity projection of the sections within each

block (partial MIP). SIFT comparison is then performed between the partial225

MIP of the last block of the front substack with the partial MIP of each block

in the back substack (Fig. 7b1). The number of blocks is determined by the

parameter Split set in the control panel (Fig. 6). For example, if the splitting

parameter is set at 2, the substacks will be divided into two blocks. The partial

MIP of the last block of the front substack will then be compared with the MIPs230

of the two back-substack blocks and the best match is selected. The selected

back-substack block is further split in two incrementally and compared with the

equally split last block of the front substack (Fig. 7b2-3), until the successively

split blocks contain only one section (Fig. 7b4). The splitting parameter can
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be set by the user, and the effect of its choice will be discussed in the results235

section.

Filter selection. This step allows using preprocessed (filtered) images instead of

original stack images to calculate registration parameters. The transformation

model will be computed by comparing the SIFT features of the filtered images,

but the resulting model will be applied to the original data. Applying various240

filters to enhance biological structures to be registered may boost feature extrac-

tion and thus improve the final stitching on real images. For example, for our

specific application, one can use a vesselness filter to enhance tubular structures

of neuronal fiber images. For more generic applications, one can choose local

contrast filter to enhance faint signals or denoising filter to eliminate misleading245

signals. Such filters are available in ImageJ/Fiji software. Another effective

way of using preprocessed images is to perform registration in 8-bit images in-

stead of original images with larger bit depth (e.g., 12-bit or 16-bit), which will

significantly reduce computation time. However, stitching of such preprocessed

images may not be scientifically pertinent, because it may affect signal intensity250

and distribution as well as bit-depth resolution. To provide users full flexibil-

ity, final concatenation can be performed either with the preprocessed data or

unprocessed raw image stacks.

SIFT features extraction and correspondence detection. Comparison of sections

of the two substacks is performed using SIFT [25]. SIFT is a local descriptor that255

allow both automatic identification of salient points in a section – by detecting

blobs within a specified size range using the Difference of Gaussian detector [36]

– and extraction of features for these points. A feature consists in an invariant

descriptor to scaling, orientation, and partially invariant to affine distortion and

illumination changes. For this step, we use the version of 2D SIFT algorithm260

developed by Stephan Saalfeld (http : //fiji.sc/Feature Extraction). Follow-

ing this implementation, we provide two key parameters: (i) minimum and (ii)

maximum size of biological structures (in pixels) to be detected, as depicted

in Fig. 6. SIFT features are extracted at all scales between maximum and

14



Figure 7: Overlap detection. (a) Slice-by-slice method: (a1) the last section of the front

substack is compared to each section of the back substack along the z-axis using (a2) SIFT

comparison until (a3) the best match is found. (a4) Overlap correspondence curve, which

shows the number of corresponding SIFT features identified between the last section of the

front substack and each slice of the back substack. The highest peak of the curve corresponds

to the position of overlap (red section in a3). (b) Block-by-block detection: (b1) the back

substack is split into several (here 2) blocks, and a MIP image is computed for each block.

Each MIP of the blocks of the back substack is compared using SIFT with the MIP of the

block of similar size (yellow) of the front substack. The best matching block (orange) is

selected. (a2) The selected block is split again into several blocks, whose MIPs are compared

using SIFT with the MIP of the corresponding thickness from the front substack to select the

best-matching block (orange). (b3) This process is repeated with decreasing thickness until

each block contains only one section (b4). The position of overlap is identified as the best

matching section of the back substack (red section) compared to the last section of the front

substack (yellow).
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minimum size. Correspondence between SIFT features is identified by nearest265

neighbor matching in the local descriptor space. However, it results in a sig-

nificant number of false correspondences. In our registration context, the set

of SIFT correspondences are related by an unknown 2-d affine transformation

T . The tool we used to separate true and false correspondences is the random

sample consensus (RANSAC) implementation proposed by [37, 38]. In short,270

it works as follows: for a fixed number of iterations, it randomly selects a set

of correspondence candidates and estimates T for them. The residual error of

all candidates in terms of T is calculated and candidates with a residual error

lower than some maximum displacement are collected as true correspondences.

The largest set of true correspondences found is used to estimate the optimal275

T . Number of iterations and maximal displacement error are parameters of the

implementation and were left to default values proposed in the implementation

of [37, 38].

Figure 8: 3D registration by three consecutive 2D comparisons: (a) Overlapping volume

between substacks is identified as shown in Fig. 7. (b-d) SIFT comparison is then performed

between spatially corresponding pairs of partial-MIP slices, first in the x-y plane (b) and then

y-z plane (c) and finally x-z plane (d).
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Affine transformation parameters estimation in three planes. Registration is

performed using only the data of the overlapping portions (Fig. 8a). Three280

successive rounds of registration are performed in three orthogonal planes (Fig.

8b-d), where SIFT comparison is performed between spatially corresponding

pairs of slices. First, the overlapping data portions of the front and back sub-

stacks are re-sliced along the z-axis to obtain cross-section slices in the x-y plane

(Fig. 8b). Slices of similar depth are compared using SIFT features between285

front and back overlapping portions to calculate translation parameter in the

x-y plane and rotation parameter around z-axis. Second, the re-slicing step is

performed along x-axis to obtain cross sections in the y-z plane, and the gener-

ated slices are compared to calculate translation in the y-z plane and rotation

around x-axis (Fig. 8c). Finally, the re-slicing step is performed along y-axis290

to calculate in the same way translation in the x-z plane and rotation around

y-axis (Fig. 8d). This combination of steps allows for a 3D registration starting

with the plane containing the most information and the potentially more dis-

placement (which is linked to the acquisition protocol which rotates the sample

according to the x-y plane). In theory, iterative uses of 2D SIFT might increase295

the chance that the whole registration would fail. It is not the case in our ap-

proach, because we initiate the iterative process in the direction of the most

likely important transformation.

In this processing step, comparison of single sections within the overlapping

portion often do not contain enough amount of corresponding signals, so that300

extracted SIFT features in the section of the front substack may match with

only a tiny number of features in a section of the back substack. To overcome

this problem, instead of comparing single sections, we again proposed the use

of partial MIP (Fig. 9). Besides its advantage of increasing the number of

SIFT correspondences due to denser signals in each partial-MIP slice compared305

to single slices of the original stack, it also reduces the impact of rotation in

the directions other than the one studied. The thickness of the partial MIP is

determined by the parameter MIP size (in slices) in Fig. 6. This parameter

is taken into account by performing the re-slicing step slice by slice and then

17



computing partial MIP on all the blocks of the specified size parameter from310

resliced front and back overlapping data portions. The effect of using partial

MIP in this specific step will be discussed in the results section.

Figure 9: Creation of partial-MIP slices along z, x and y. The image stack volume is re-sliced

into three directions, and MIP is calculated from subsets of slices. (a) Partial MIP parallel to

x-y plane. (b) Partial MIP parallel to y-z plane. (c) Partial MIP parallel to x-z plane. Each

partial-MIP slice contains more signals for feature extraction compared to thin single sections.

Reduction of the total number of slices for comparison also reduces computation time.

The set of three registration rounds can be repeated as many times as nec-

essary to further improve the precision of registration. Multiple application of

translation and rotation would result in the accumulation of image degradation315

caused by recalculation and interpolation of voxels at each registration step. To

avoid this we combined the translation and rotation parameters calculated by

all the previous steps and applied them to the original substack data to generate
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the final registered substack data.

Registered overlapping portions fusion. Finally a fusion step enables to combine320

information from the two registered overlapping portions into a single image

stack. It allows fixing the difference of brightness within the overlap due to light

attenuation by tissue and photobleaching of signals during image acquisition.

For this step, we use the stitching plugin developed by Stephan Preibisch (http :

//imagej.net/ImageStitching). Following this implementation, different fusion325

methods such as Average, Maximum, Minimum and Linear blending of the two

substacks can be selected.

3.3. In silico simulation of laser-scanning microscopy image stacks

To quantitatively evaluate our registration algorithm, we need a set of sample

image substacks for which degrees of rotation and tilting are precisely known.330

Such quantitative comparison is difficult on real samples, because image stacks

contain uncontrollable factors such as noise, signal attenuation and photobleach-

ing, making them difficult to register precisely with human eyes. An alternative

approach is to use in silico simulation to generate images for the evaluation of

our registration algorithm. This approach starts by analyzing the noise in laser335

scanning- microscope images.

Noise analysis. The noise in 3D image stacks acquired by confocal laser-scanning

fluorescence microscopy is known to follow a Gamma law of shape k and scale

θ [39]:

f(x; k; θ) = xk−1 exp (x/θ)

θkΓ(k)
, (1)

for x > θ and k > 0 and θ > 0. It must be emphasized that the parameters k340

and θ of the gamma law are not the same in the signal and in the background

and are depth-dependent. Thus, we estimated those parameters for two different

parts of the image: the signal (in our case neuronal fibers) and the background.

For this purpose, we made a binary mask of neuronal fibers by thresholding each

section of our real image stacks (Fig. 10a). The threshold was set automatically345
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(Fig. 10b) using Li entropy method [40]. The fiber signal is then extracted by

multiplying the corresponding binary mask with the original stacks (Fig. 10c);

whereas the background signal is obtained by multiplying the inverse of the

binary mask with the original stacks (Fig. 10d).

Figure 10: Noise estimation for a real image stacks of Drosophila brain. Image intensity in (a)

and (d) is enhanced to make dark noises more visible. (a) Original image. (b) Binary image

(threshold selected automatically using Li method). (c) Signal segmentation (original image

within the binary image mask of b). (d) Background segmentation (original image outside

the binary image mask of b).

To evaluate the nature of the noise observed in our datasets, the resulting350

fiber signal and background images were fitted to a gamma distribution to es-

timate the parameters k and θ throughout the sections of the front and back
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Figure 11: Evolution of the parameters k (top panel) and θ (bottom panel) of the gamma law

of the microscope noise within the signal portion (a) and background portion (b) of the front

substack. Results of five different brain samples and their average (red). The first 20 µm,

which contains mostly the image of round cell bodies, are excluded from evaluation.

21



substacks in five different brain samples (Figs. 11-12). Noise in the fiber sig-

nal of the front substacks shows a symmetric evolution for k and θ (Fig. 11a):

while k is increasing, θ is decreasing with the depth. In short, the increase of355

the shape parameter k with the depth traduces the convergence of the shape

of the Gamma distribution towards a Gaussian distribution and the decrease

of scale parameter θ with the depth is coherent with the global decrease of the

signal intensity observed in deep layers of the image stacks. Noise in the back-

ground shows similar tendency as in the signal part (Fig. 11b). However, the k360

parameter is much greater in the background, thus the background noise tends

to be more Gaussian. On the contrary, the θ parameter is more than 10 times

smaller in the background compared to the signal, which means that the signal

distribution is much less spread out.

Noise in the signal and background parts of the back substacks shows similar365

evolution (Fig. 12): while k is increasing, θ is decreasing with the depth in the

same order of magnitude. However in the overlap (part of the sample that was

already imaged from the frontal surface) θ is reduced due to photobleaching.

Using these data we estimated the noise parameters k and θ as the average

of the fitting curves of the five different brain samples in the signal and back-370

ground parts for the front and back substacks (Figs. 11, 12). These averaged

k and θ parameters estimated through the depth can then be used as empirical

laws for the evolution of noise in laser-scanning microscope modeled as a depth

dependent gamma distribution.

Simulation. Based on the previous noise model, we created an in silico simu-375

lator of laser-scanning microscopy image stacks (Fig. 13). We first took the

binary masks of the signal (i.e. fibers) and background structures (Fig. 13 left)

generated for the study of the noise (Fig. 10). We then added two different

types of simulated noise on the signal and background structures, respectively,

depending on the depth from the surface of the virtual sample (Fig. 13 mid-380

dle). Finally, signal and background images with added noises were merged to

produce simulated laser-scanning microscopy images (Fig. 13 right).
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Figure 12: Evolution of the parameters k (top panel) and θ (bottom panel) of the gamma law

of the microscope noise within the signal portion (a) and background portion (b) of the back

substack. Results of five different brain samples and their average (red), after removing the

first 20 µm (cell bodies).
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Figure 13: Overview of the in silico simulation of confocal microscopy image stacks. First,

binary mask of the signal portion is generated from a real dataset of laser scanning microscopy.

The mask appears sharp and bright regardless of the depth of the section in the sample. Next,

simulated noise in the signal (fibers) and background according to the depth is convoluted to

the binary masks. Finally, the signal and background images are merged.
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In this study, we simulated a brain sample with a thickness of 120 µm (Fig.

14 top, 800 x 800 x 300 voxels). We divided the sample into two overlapping

substacks (Fig. 14a top) and added depth-dependent noise to the sample re-385

garding the structure parts and the nature of the substack (i.e., front or back).

In these simulated substacks, the red-colored section in (Fig. 14a bottom) is

respectively 30 µm and 90 µm away from the surface of the sample in the front

and back substacks. Therefore it appears relatively clear in the front substack

(Fig. 14d), but more blurred in the back substack (Fig. 14e). These observa-390

tions are consistent with real laser-scanning images of neuronal fibers. Finally,

by rotating and translating these virtual substacks, we are able to create tilted

substacks with known transformation parameters to evaluate the performance

and the accuracy of our registration algorithm.

Providing synthetic ground truth for binary structures (such as for the fly395

brain neurons in Fig. 14) is relatively straightforward. Much more effort would

be required for textured samples, and, in practice this is not done (i.e. one rather

resort to the sole visual inspection on real images to qualitatively assess the

registration performance). We provide an illustration on such a textured sample

with images of real fly leg in supplementary data. However for some biological400

structures, it is possible to generate ground truth numerically from scratch.

This is for instance possible for spheroid i.e. cellular spherical aggregates of cells

which constitute 3D in vitro models for life sciences (see supplementary data for

images of real spheroid). Synthetic models of spheroid exist in the literature [41]

and to further illustrate the genericity of our simulator we provided additional405

quantitative analysis with experiments on synthetic spheroids as illustrated in

Supplementary material 5.

4. Results

Detailed illustrations are given on the results of the experiments carried on

simulated or real fruit fly brains in this section. Supplementary experiments410

successfully carried on real and simulated spheroids and real fly legs are given
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Figure 14: Generation of virtual substacks from a single image stack. (a) A single image stack

(in this example the thickness of 300 sections = 120 mum) is divided into two overlapping

substacks (with the thickness of e.g., 250 sections = 100 mum). Noise simulation is then

applied to the front substack from front to back to simulate the imaging from the frontal side,

and from back to front to the back substack to simulate the imaging from the back side. (b)

Real image. (c) Binary mask of the signal structure. (d) In silico simulation of the image

section if it is placed at 30 µm from the surface. (e) The same section if it is placed at 90

µm from the surface. Note that the signal appears darker and more blurred and background

noise appears higher in (e) compared to (d), which is consistent with the image degradation

in real confocal microscopy image stacks.
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in the supplementary data so as to illustrate the generic value of the proposed

method.

4.1. Validation of registration accuracy

Using the simulator, we tested the quality of our registration algorithm (Figs.415

15-16). We rotated the virtual back substack by 1◦ around x-, 2◦ around y-,

and 5◦ around z-axes, applied the noise simulator, and subjected the data to

2D-SIFT-in-3D-Space registration. The performance of our algorithm can be

qualitatively assessed in Fig. 15. The front substack in green is superposed

to the back substack in magenta. The superposed image should appear white420

where the two substacks are perfectly registered. The two images do not match

just after the overlap detection step (Fig. 15a). Subsequent registration in

the x-y plane (Fig. 15b) and then x-z plane (Fig. 15c) and y-z plane (Fig.

15d) gradually improves matching and the overlapping images appear almost

completely white with only a slight green or magenta blurred halo, attesting a425

good quality of registration. The final rotation matrix computed for this dataset

is shown in Table 1a. When we convert this rotation matrix into Euler angles

Rx, Ry and Rz (respectively rotations around x-, y- and z-axes), we obtain Rx =

-1.2757◦, Ry = -2.0232◦, Rz = -5.0010◦, which are very similar to the opposite

of the angles introduced artificially in our simulated data. Registration was430

very precise for z (registration error 0.019%) and y (1.160%) but worse for x

(27.566%).

Registration can be improved by a second loop through the registration pro-

cess. Indeed, after two iterations of registration, the rotation error around x is

greatly improved (Table 1b, i.e., 0.428%). Higher number of iterations further435

decreases the rotation errors as well as translation errors, which are lower than

1% of the original rotation angles and less than 1.3 voxels (0.26 µm) of transla-

tion. In practice, 2 iterations seem to be a good compromise between accuracy

and computation time, because further registrations do not greatly improve the

errors. It can be noted however from Table 1b that rotation error after multiple440

iterations becomes very small around z-axis, but remain a bit larger around x-
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Table 1: Rotation parameters after registration of the simulated data. Initial substack tilt

corresponds to Rx = 1◦, Ry = 2◦, and Rz = 5◦. 1 voxel = 0.2 µm. Total rotation error =√
∆Rx2 + ∆Ry2 + ∆Rz2 and Total translation error =

√
∆x2 + ∆y2 + ∆z2

a: Conversion matrix (Substack size 800 x 800 x 250 , i.e., overlap: 200 , after single

iteration)

0.9955825655501388 0.08765056866153828 -0.03262316976298832

-0.08711895143914962 0.9957863605004061 0.023091300973873324

0.03532588980227439 -0.02226238860907968 0.9997414741550107

Rx = -1.2757 Ry = -2.0232 Rz = -5.0010

b: Registration results after different number of iterations (Substack/overlap size are

the same as above)

Iter # Euler angles: Rotation error: Total Total

Rx Ry Rz ∆Rx ∆Ry ∆Rz rot. trans.

error error

(◦) (◦) (◦) (%) (%) (%) (%) (voxels)

1 -1.2757 -2.0232 -5.0010 27.566 1.160 0.019 27.590 1.898

2 -0.9957 -1.9853 -4.9998 0.428 0.734 0.004 0.850 1.292

3 -0.9914 -1.9908 -5.0043 0.855 0.461 0.085 0.975 1.243

4 -0.9902 -1.9865 -5.0015 0.976 0.674 0.030 1.186 1.221

5 -0.9927 -1.9888 -5.0004 0.733 0.560 -0.009 0.922 0.928

c: Registration results for different amount of overlap (Results after 2 iterations)

Euler angles: Rotation error: Total Total

Overlap Rx Ry Rz ∆Rx ∆Ry ∆Rz rot. trans.

error error

(voxels) (◦) (◦) (◦) (%) (%) (%) (%) (voxels)

200 -0.9957 -1.9853 -4.9998 0.428 0.734 0.004 0.850 1.292

150 -1.0029 -1.9854 -4.9982 0.292 0.730 0.036 0.787 1.867

100 -1.0259 -1.9925 -5.0006 2.594 0.377 0.012 2.621 2.895

50 -1.0122 -2.0001 -5.0106 1.218 0.007 0.213 1.237 3.884
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and y-axes. The better registration accuracy around z-axis compared to x and

y can be explained by the size of the image slices. Indeed, the x-y slices are

much larger (800 x 800 pixels) than the x-z and y-z slices (800 x 200 pixels),

leading to a greater number of matching features. Registration performance445

can also be examined using the overlap correspondence curve, which shows the

number of matching features between the last section of the front substack and

each section of the back substack (Fig. 16a). After the overlap detection (zero

iteration), the corresponding curve appears very broad with a small number of

matching features (blue line in Fig. 16a). Indeed, the front and back substacks450

are not registered yet and thus the similarity between them is still rather low.

On the contrary, the correspondence curve after the first round of registration is

much thinner and sharper, and the number of features is three times larger, tra-

ducing a higher similarity between the front and back substacks (see Fig. 16b)

and thus the efficiency of the registration. The correspondence curves after the455

second iteration onwards are essentially superposition of the image stacks, with-

out showing further improvement (Figs. 16c-d). Finally, because image size is

likely to affect registration quality, and because image sizes in x-z and y-z slices

are determined by the overlap size, we also investigated its effect. When we

reduced the overlap by taking fewer sections from the front and back substacks,460

registration error increased (Table 1c). If the overlap size was too small (e.g.,

50 voxels), the algorithm struggled to find rotation around x and y with the

default parameters. However, modification of those parameters (here reducing

the minimum size of structures to 1) fixed the problem (Table 1c, bottom).

These results show that multiple iterations and large enough overlap size are465

both important for precise registration.

4.2. Performance comparison between block-by-block and slice-by-slice overlap

detection

We evaluated the accuracy of the block-by-block and slice-by-slice overlap

detection approaches. Block-by-block approach is meant to allow registration470

of substacks with large tilting angles. To determine the tilting limit of this
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Figure 15: Superposition of the front (magenta) and back (green) substacks at each step of

registration. (a) Before registration. (b) After registration in x-y plane (around z). (c) After

registration in y-z plane (around x). (d) After registration in x-z plane (around y).
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Figure 16: Registration of simulated data with small tilting (Rx = 1◦, Ry = 2◦, Rz = 5◦).

(a) Overlap correspondence curve for zero to five iterations. Inset shows the expanded view

of the graph around the peak to better show the overlapping lines. (b-d) Superposition of the

corresponding sections of the front substack (green) and registered back substack (magenta)

after (b) one, (c) two and (d) three iterations.
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approach, we fixed the tilting angles of Rz = 5◦, Ry = 2◦ and gradually in-

creased the value of Rx by 5◦ steps and submitted the data to slice-by-slice

(Table 2a) and block-by-block (Table 2b) approaches. The splitting parameter

was set at 5 for block-by-block approach. Please note that both approaches475

used partial MIP in the registration step and that its size was set to 20 slices

for both versions. Both overlap detection approaches performed similarly for

small tilting angles (< 15◦) leading to good results. However, stitching with

block-by-block approach produced smaller error rates and was two times faster

than slice-by-slice approach. The difficulty of overlap detection increases with480

tilting because the similarity of sections perpendicular to z-axis decreases. Over-

lap detection with slice-by-slice approach becomes difficult as Rx reaches 20◦,

where the correspondence curve does not present the typical bell-shape but is

extremely noisy with very few matching features (Fig. 17a). Thanks to the reg-

istration step around the three axes, overlap detection was drastically improved485

after a few registration iterations in terms of matching features (orange curve in

Fig. 17b). However, the computed rotation parameters were not as accurate as

expected, with high rotation error rate around x- and y-axes (6.35% and 19.1%

respectively, Table 2a bottom).

Figure 17: Registration of simulated data with big tilting (Rx = 20◦, Ry = 2◦, Rz = 5◦)

with the slice-by-slice overlap detection. (a) Overlap correspondence curve before registra-

tion. Highest peak was at the 131st section. (b) Comparison of the curves before and after

registration. Actual matching peak after registration was at the 49th section.
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Table 2: Comparison of registration errors between block-by-block and slide-by-slide overlap

detection for increasing tilting angles. (Rx = 5 to 20◦, with Ry = -2◦ and Rz = 5◦, substack

size: 800 x 800 x 250 . Partial MIP size is set at 20 slices. Computation time was measured

on a computer with an Intel Core i7-4930k processor (6-core) running at 3.4GHz.)

a: Slice-by slice overlap detection

Euler angles: Rotation error: Total Total Comput.

Tilt Rx Ry Rz ∆Rx ∆Ry ∆Rz rot. trans. Time

error error

(◦) (◦) (◦) (◦) (%) (%) (%) (%) (voxels) (min)

5 -4.99 2.00 -4.99 0.036 0.180 0.007 0.18 2.38 71

10 -9.99 2.01 -5.00 0.084 0.566 0.017 0.57 4.50 53

15 -14.98 2.00 -5.00 0.081 0.086 0.046 0.12 6.54 45

20 -18.72 -1.61 -4.96 6.352 19.05 0.616 20.09 12.13 37

b: Block-by-block overlap detection

Euler angles: Rotation error: Total Total Comput.

Tilt Split Rx Ry Rz ∆Rx ∆Ry ∆Rz rot. trans. Time

error error

(◦) (◦) (◦) (◦) (%) (%) (%) (%) (voxels) (min)

5 5 -4.99 2.00 -4.99 0.012 0.126 0.049 0.13 2.38 40

10 5 -9.99 2.00 -4.99 0.090 0.356 0.095 0.48 4.46 26

15 5 -14.97 2.00 -5.00 0.162 0.125 0.079 0.22 6.65 23

20 5 -168.2 -1.24 -5.44 741.2 37.8 8.8 742.3 16124 10

20 2 88.93 58.6 -88.4 544.6 2832.8 1669.8 3333.1 368420 11

20 1 -19.93 2.00 -5.01 0.319 0.126 0.242 0.42 8.78 33
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Stitching with block-by-block approach at Rx = 20◦ also caused erroneous490

computed rotation angle, with an error rate as high as 741% and 79.9% around

x- and y-axes (Table 2b, 4th row). Because the thickness of the detected initial

overlap was small (77-section thick), the matching features were concentrated

only in a small portion of the data (Fig. 18a, green circle). To address this we

then decreased the splitting parameter to two, but the detected overlap thickness495

was again as low as 76 sections (Fig. 18b, green circle), causing similarly high

error rates (Table 2b, 5th row). In our algorithm, we first detect the overlapping

portion of the substacks and then perform subsequent registration only using

this portion of the data. With high tilting angle between substacks, only a small

part of the overlapping volume might be detected. However, we can effectively500

skip overlap detection by setting the splitting parameter to one (i.e., no splitting)

so that the program uses the data of the entire substacks to compute registration

(Fig. 18c, green circle). This strategy resulted in much improved rotation error

as low as 0.32% (Table 2b, last row).

4.3. Influence of the splitting parameter in block-by-block approach505

We next analyzed the effect of the splitting parameter for block-by-block

overlap detection for a moderate tilting angle of Rz = 5◦, Ry = 2◦ and Rx =

5◦ (Table 3). We performed registration for splitting parameter ranging from 1

(no split) to the number of the sections in the substack (corresponding to the

slice-by-slice approach). After 5 iterations, registration accuracy was essentially510

the same for all splitting parameters (Table 3), but it should be noted that

computation time was long when the split value = 1 (58 min) because the entire

substack data are subjected to subsequent registration. Because the overlap

does not cover all slices in case of moderate tilting angles, many SIFT features

will not match and their consideration does not bring any improvement to the515

registration result. Because of this, a split value of 1 must be used only in case

of high tilting between the two stacks as discussed in the previous subsection.

When splitting was activated (split value¿1), computation time depended on

the total number of SIFT comparisons for overlap detection (Table 3, second
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Figure 18: Repartition of matching features (green) of artificial data with big tilting (Rx =

20◦, Ry = 2◦, Rz = 5◦) using the block-by-block overlap detection algorithm with the splitting

parameter of 5 (a), 2 (b), and no splitting (c). Detected overlap was 77, 76 voxels for (a) and

(b). In (c), the algorithm uses the data of the entire substacks (250 voxels).
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Table 3: Registration errors and computation time of the block-by-block algorithm for different

splitting parameters with Rx = 5◦, Ry = -2◦ and Rz = 5◦. Partial MIP size is set at 20 slices.

Split Compa- Euler angles: Rotation error: Total Total Comput.

rison # Rx Ry Rz ∆Rx ∆Ry ∆Rz rot. trans. Time

error error

(◦) (◦) (◦) (%) (%) (%) (%) (voxels) (min)

1* 1 -4.99 2.003 -4.9977 0.061 0.162 0.046 0.180 2.38 58

2 15 -4.997 2.000 -5.001 0.061 0.031 0.034 0.076 2.44 32

5 17 -4.999 2.002 -4.997 0.012 0.126 0.049 0.136 2.38 40

10 22 -4.998 2.000 -4.998 0.028 0.023 0.024 0.042 2.40 44

15 31 -4.991 1.999 -5.001 0.164 0.028 0.030 0.169 2.38 46

20 32 -4.999 2.005 -5.001 0.013 0.271 0.033 0.273 2.49 48

50 55 -4.998 2.003 -4.998 0.032 0.160 0.035 0.167 2.37 60

125 76 -4.998 2.004 -4.998 0.040 0.199 0.029 0.205 2.42 125

250** 71 -4.998 2.003 -4.999 0.036 0.180 0.007 0.184 2.38 250

* No split, **Effectively the same as slice-by-slice comparison

column). This comparison number is linked to the split value. For our simulated520

substacks (250 sections thick) and a split value of 5, the program first splits the

substacks into 5 blocks of 50 sections and does 5 SIFT comparisons (between

the last block of the front substack and the 5 blocks of the back substack) to

find the best match. The selected block is then split into 5 blocks of 10 sections

and compared with a block of the same size from the front substack (5 com-525

parisons). The best-matching block is further split into 5 blocks of 2 sections

and once again compared five times. Because the new selected block contains

only 2 sections, it cannot be further split and a slice-by-slice comparison is used

to determine the exact position of overlap (two comparisons). Thus, we need

in total 17 comparisons to detect the overlap size. This number of compar-530

isons is much smaller than that of the slice-by-slice comparison (250). However,

the computation time was only about two times faster (40 min versus 71 min,

Table 3). This is likely because thick partial MIP images present more SIFT

candidates. The number of comparison increases as we set higher splitting pa-

rameter, which results in longer computation time (Table 3). Thus, for practical535

purposes splitting parameter between 2 and 5 should be preferred. However, if

the sections contain very dense signals, setting a too small split value may cause

saturation or too many unmatching features. The running time then increases

a lot but not the quality of registration.
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4.4. Impact of image filtering on registration accuracy540

As previously discussed in introduction, signal quality tends to decrease with

the depth in the samples. Unless adequately compensated, images of the sec-

tions that are deep in the specimen tend to appear darker than those that are

close to the sample surface because of the attenuation of light passing through

the specimen and photobleaching of fluorophores during image acquisition [5].545

Despite the relative robustness of SIFT matches toward brightness difference

between the two images to be registered, it can be helpful to perform a fil-

tering step of the image substacks to compensate the brightness mismatch of

comparable sections before registration. To address this problem we developed

a Fiji/ImageJ plugin Progressive Intensity and Gamma Correction (see Figs.550

S4, S5 of the Supplementary data). Using this plugin we tested the effect of

intensity/gamma correction on the precision of registration. Fig. 19 compares

the results of overlap extraction for the same pair of substacks with or without

intensity/gamma correction. Compared to the original substack (Fig. 19a),

intensity was corrected between 100% and 300% linearly and gamma between555

1.0 and 1.4 linearly from the first (shallowest) to the last (deepest) sections

of substacks (Fig. 19b). After the overlap detection (before registration), the

overlap correspondence curve appears much thinner and sharper, and the num-

ber of features is five times larger (Fig. 19c) after intensity/gamma correction

(blue line) than with the original data (green line). Indeed, corresponding curve560

of the original data presents a plateau, making the overlap size determination

confusing, whereas the curve of the corrected data shows a sharp peak from

which we can precisely deduce the overlap size. This difference can be noticed

as a slight shift along the z-axis when the front and back substacks are merged.

In the cross section view of the stack (Fig. 19d, e), we can see that the su-565

perposition works better (white color without green or magenta fringes) for the

intensity-corrected data (Fig. 19e) than for the original data (arrows in Fig.

19d).
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Figure 19: Improved registration after intensity and gamma correction. (a) Original data.

(b) Corrected data (Intensity 100% to 300% linear, gamma 1 to 1.4 linear). (c) Number of

SIFT features in the overlap detection for original data (green) and intensity/gamma corrected

data (blue). Rectangle shows the plateau of the matching peak without intensity and gamma

correction. (d, e) The x-z cross-sections of the stack, showing superposition of the front

(green, left side of the panels) and back substack images (magenta, right side of the panels).

Registration on original data (d) and corrected data (e). Brightness is enhanced for better

visualization. Arrows in (d) indicate green and magenta fringe caused by the mismatch

between the front and back substacks, which are hardly seen in (e). Scale bars = 50 µm

(a, b), 10 µm (d, e).
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4.5. Performance on real data

Our plugin can efficiently perform very fine adjustments and precisely reg-570

ister small objects such as neuronal fibers and presynaptic sites. Fig. 20 shows

the performance of our registration algorithm for the real image stacks of the

Drosophila brain at a voxel resolution of 0.2 x 0.2 x 0.2 µm (1600 x 1600 voxels

and 800 sections). The front substack (Fig. 20a, shown in magenta in Fig. 20c)

was registered and superposed to the back substack (Fig. 20b, shown in green575

in Fig. 20c). In the overlaid image (Fig. 20c), green and magenta cast should

appear on the opposite sides of the objects if two stacks are out of alignment.

The lack of such cast attests perfect registration. (Note: green or magenta cast

that appears on the entire object is caused by the voxel intensity differences

between front and back substacks.) The stitched dataset serves as a starting580

point for characterizing the fine architecture of the visualized neurons at very

high resolution.

4.6. Effect of optical aberrations

2D-SIFT-in-3D-Space Volume Stitching performs only affine transformation.

This is because the section images of the same sample obtained from different585

sides should have same morphology. However, we found that this assumption

may not always be true. In a few cases, we noticed that peripheral areas of

the image could not be registered completely even when complete match was

achieved in the central parts of the image. There is apparently a slight non-linear

distortion between the section images of the same part of the sample obtained590

from the different substacks (Fig. 21). This is most likely because of the optical

aberrations caused by the microscope objectives and scan optics. Among Sei-

dels five aberrations, spherical aberration, coma, and astigmatism mainly affect

the sharpness of the image without affecting the location of the signal. Those

aberrations may cause uneven sharpness in the image field. Then sharper parts595

of the image with the highest feature correspondences concentration will have a

stronger influence on the model computation, leading to perfect registration in

those parts but a shift between the front and back substacks in other parts of
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Figure 20: Registration and superposition of the substacks. Example of a real image stacks of

the Drosophila brain (a) A section from the front substack, and (b) its corresponding section

from the back substack after registration. (c) Close-up view of the superposition of the two

sections (rectangles in upper panels). Magenta (section of the front substack) and green

(section of the back substack) images are superposed. Scale bars = 30 µm (a, b), 20 µm (c).
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the image. Moreover, the other two aberrations field curvature and distortion

cause distorted projection from the signal distribution in the sample to the ob-600

tained 3D image space, making straight lines in the sample appear curved along

z-axis (field curvature) or in the x-y plane (distortion). An objective lens tuned

for the best performance at certain focal depth in the sample may not perform

optimally at shallower or deeper levels. Thus, the optical sections of the same

part of the specimen but obtained from different sides (i.e., at different depth)605

may not be identical. Adaptive optics and post-imaging distortion correction

should be helpful to reduce the effect of optical aberrations [42, 43, 44].

Figure 21: Illustration of registration errors caused by optical aberration. Superposition of

the front substack (green) and back substack (magenta). (a) The two substacks are registered

nicely in the central part of the image. (b) In the peripheral areas of the image, however,

small mismatch tends to remain regardless of the registration around any axes (arrows).
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Conclusion

Although confocal laser-scanning fluorescent microscopy is used extensively

in many biological laboratories to visualize a large variety of cells and specimens,610

its depth limitation problem makes it difficult to study thick samples. Even

though microscope manufacturers try to provide objective lenses with longer

working distances, diffraction and scattering of lights within the optically un-

even specimen still causes practical limitations. Two-photon microscopy does

not solve this problem; although long-wavelength infrared light of the excita-615

tion laser is less prone to diffraction and scattering, emission light of short-

wavelength from the labeled signals suffers from the same optical problem as in

single-photon confocal microscopy. A promising alternative solution to obtain a

thick high-resolution image stack is to stitch multiple substacks that are taken

either from both sides of the specimen by sample flipping or from the same620

side by cutting off the sample surface progressively with microtomes. This al-

ternative solution raises the problem of registration and stitching of partially

overlapping 3D stacks. In this article, we proposed 2D-SIFT-in-3D-Space as an

efficient method to address the registration and stitching of a variety of 3D im-

age stacks. It specially allows tight adjustment of stacks of thin structures such625

as neurons to avoid seams between stitched substacks, or tiles, reducing errors in

further 3D image processing and analyses. The registration is realized with an

iterative combination of existing 2D local features in the 3D space. 2D-SIFT-in-

3D-Space algorithm is not limited to neuron images of front and back substacks;

it can be used on a variety of different datasets that require precise registration630

(See Figs. S2, S3 of the Supplementary data for additional examples). Also

to help advanced analyses of 3D image stack in laser-scanning microscopy and

to improve SIFT registration of dark samples, we provide a tool that improves

intensity and contrast of serial section image stacks to compensate the loss in-

duced by photobleaching and attenuation of the fluorescence (see Figs. S4, S5635

of the Supplementary data). Quantitative validation of 2D-SIFT-in-3D-Space

is realized with the help of an in silico virtual test data specially created for
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this study to simulate the noise in fluorescent laser-scanning microscopy. Given

the huge literature and software libraries dedicated to image registration, other

programs, as discussed in the related work section, would in principle have the640

potential to also perform the registration problem illustrated here on Drosophila

brain. Different image datasets possess diverse characteristic features that af-

fect registration, and each registration method has to be tuned properly for each

purpose for a fair comparison. A quantitative comparison with all registration

solutions and exhaustive investigation of the whole parameter spaces of each of645

all these solutions would be an important milestone. Such an exhaustive work

has recently been proposed for instance for particle tracking [45]. To target

a similar milestone for 3D image registration of fluorescent microscopy, anno-

tated image datasets with ground-truth registration solution would be required.

Manual annotation and registration of such datasets would be very difficult and650

time consuming. The simulator proposed in our manuscript therefore opens the

way to the quantitative benchmark of various registration methods of 3D images

acquired with fluorescent microscopy.

Other interesting perspectives include evolution of our algorithm. We con-

sidered situations where it was possible to assume that the samples were not655

deforming during two imaging steps. In this framework, we logically considered

rigid registration. In case where this assumption would not hold it would then

be necessary to realize non rigid transformation. Also, the proposed algorithm

allow to register multiple channels in fluorescence stack of images. However, the

registration is based on one single channel (the best contrasted one), and the660

computed transformation is then applied to the other channels. SIFT can be

applied to multiple component 3D images in principle and a joint registration

of the channel could be considered as a further improvement.

Information Sharing Statement

The described algorithm 2D-SIFT-in-3D-Space Volume Stitching is imple-665

mented using the Java programming language and provided as Open Source
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plugin module of Fiji/ImageJ. It depends in Fiji on mpicbg package for SIFT

and RANSAC and stitching package to fuse image stacks. The source code

of the algorithm is available via Github (https://github.com/rosahuaman/

2D-SIFT-in-3D-Space-master). The simulator of laser-scanning microscopy670

image stacks was performed using Matlab (Natick, Massachusetts). The script

code and artificially generated datasets from simulation are available via https:

//www.creatis.insa-lyon.fr/site7/fr/MicroTools.
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