

Deep learning for Inverse Problems: a Focus on Compressive Optics

Nicolas DUCROS¹

¹CREATIS, Univ Lyon, INSA-Lyon, UCB Lyon 1,CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France https://www.creatis.insa-lyon.fr/~ducros/

This work was supported by the French National Research Agency (ANR), under Grant ANR-17-CE19-0003 (ARMONI Project). It was performed within the framework of the LABEX PRIMES (ANR-11-LABX-0063) of Université de Lyon, within the programme "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the ANR.

INVERSE PROBLEMS

Computerized tomography (CT)

Ultrasound Imaging

Magnetic Resonance

INVERSE PROBLEMS

Internal unknowns from external measurements

> Most medical imaging problem are linear. In a discrete setting:

> Traditional approaches

$$\min_{\boldsymbol{f}} \|\boldsymbol{m} - \boldsymbol{A}\boldsymbol{f}\|_{2}^{2} + \mathcal{R}(\boldsymbol{f})$$
Data fidelity

The regularizer is hand-crafted

$$\mathcal{R}(\boldsymbol{f}) = \|\boldsymbol{f}\|_2^2 \qquad \qquad \mathcal{R}(\boldsymbol{f}) = \|\nabla \boldsymbol{f}\|_1$$

- Minimization usually required iterative algorithms
- Time consuming

INVERSE PROBLEMS

Deep reconstruction methods

Training
 Database

 $\{f^{(\ell)}; m^{(\ell)})\}, 1 \le \ell \le L$

(Stochastic) optimization of a 'loss'

$$\min_{\boldsymbol{\omega}} \sum_{\ell=1}^{L} \|\boldsymbol{f}^{(\ell)} - \mathcal{G}(\boldsymbol{\omega}; \boldsymbol{m}^{(\ell)})\|_2^2$$

Computation times

- Training phase is slow (e.g., several hours or days)
- Evaluation is fast (e.g., tens of milliseconds)

COMPRESSIVE OPTICS

HYPERSPECTRAL IMAGING

Nicolas Ducros, 22 April 2020 | Deep Learning for Medical Imaging School, CREATIS, Lyon (virtual)

COMPRESSIVE (SINGLE-PIXEL) CAMERA

COMPRESSIVE HYPERSPECTRAL CAMERA

ACQUISITION MODEL

Linear model

Challenge
 A small M limits the acquisition time
 A small M limits the image resolution too!

ACQUISITION-RECONSTRUCTION

$$m{m}=m{P}_1m{f}$$

11

- I. Weight design: How to choose the P?
- 2. Reconstruction: How to recover the image f?

Noise reduction

$$m_k \sim \mathcal{G}(\mu = 0, \sigma^2) \qquad 1 \le k \le K$$

$$\mathrm{var}\,(f_n^*)=\sigma^2$$

1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

✤ Hadamard

$$\mathrm{var}\left(f_{n}^{*}\right)=\frac{1}{N}\sigma^{2}$$

ACQUISITION-RECONSTRUCTION

Boosting effect

[N. Ducros et al, working paper, 2020]

RECONSTRUCTION

- 2. **Reconstruction:** How to recover the image **f** from **m**?
 - Constrained optimization

$$\min_{\boldsymbol{f}} \mathcal{R}(\boldsymbol{f}) \quad ext{such that} \quad \boldsymbol{m} = \boldsymbol{P}_1 \boldsymbol{f}.$$

- Least squares: fast but low resolution [Rousset et. al, IEEE TCI, 2017]
- Total variation: higher resolution but time consuming [Duarte et. al, IEEE SPM, 2009]

- 2. **Reconstruction:** How to recover the image **f** from **m**?
 - Deep learning: Learn a nonlinear reconstructor [Higham et. al, Sci. Rep., 2018]

$$f^* = \mathcal{H}_{\theta}(m),$$

- \rightarrow How to choose the non linear 'model'?
- \rightarrow How does this relate to traditional approaches?

> The least-squares problem

$$\min_{\boldsymbol{f}} \|\boldsymbol{f}\|_2^2 \quad ext{such that} \quad \boldsymbol{m} = \boldsymbol{P}_1 \boldsymbol{f}.$$

... has the closed-form solution

$$oldsymbol{f}^* = oldsymbol{P}_1^ op oldsymbol{m}$$

... equivalent to

$$f^* = P^{\top}y^*$$
, with $y^* = \begin{bmatrix} m \\ 0 \end{bmatrix} \in \mathbb{R}^N$
What about completing the missing measurements by relevant values?

Nicolas Ducros, 22 April 2020 | Deep Learning for Medical Imaging School, CREATIS, Lyon (virtual)

> How to complete?

STL-10 dataset

\rightarrow Exploiting the correlation between the measured coefficients

Completion approach

$$oldsymbol{f}^* = oldsymbol{P}^ opoldsymbol{y}^*, \quad ext{with} \ oldsymbol{y}^* = egin{bmatrix} oldsymbol{m} \ oldsymbol{y}_2^* \end{bmatrix},$$

with

$$oldsymbol{y}_2^*(oldsymbol{m}) = \mathbb{E}\left(\mathbf{y}_2 \,|\, \mathbf{y}_1 = oldsymbol{m}
ight)$$

Under Gaussian assumptions \geq

$$\boldsymbol{y}_{2}^{*}(\boldsymbol{m}) = \boldsymbol{\mu}_{2} + \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{1}^{-1}(\boldsymbol{m} - \boldsymbol{\mu}_{1})$$

Covariance between / measured and missing

measured

20

10

0

-10

-20

-30

-20

20

0 Hadamard coefficient #2

Hadamard coefficient #7

No assumption: This is the best linear solution! \geq

> Traditional CNN architecture

> Traditional CNN architecture

CNN architecture

Fully-connected layer (FCL)

Choices for the FCL

✤ Free [Higham et. al, Sci. Rep., 2018]

 $ilde{m{f}} = \mathcal{H}_{ heta_1}(m{m})$

 Pseudo inverse [Jin et. al, IEEE TIP, 2017, Ravishankar et. al, Proc. IEEE, 2020]

 $ilde{m{f}} = m{P}_1^ op m{m}$

 Bayesian completion [N. Ducros et. al, IEEE ISBI, 2020]

$$\widetilde{f} = oldsymbol{P}^ opoldsymbol{y}^*, \quad ext{with} \, oldsymbol{y} = egin{bmatrix} oldsymbol{m} \ oldsymbol{y}_2^* \end{bmatrix}$$

3 network variants

freeNet: (~IM parameters)

- pinvNet: (~4k parameters)
- compNet: (~4k parameters)

STL-10 (training using ~100k images; testing using 8k images) \geq

$$\min_{\boldsymbol{\theta}} \sum_{i} \|\boldsymbol{f}^{(i)} - \mathcal{H}_{\boldsymbol{\theta}}(\boldsymbol{m}^{(i)})\|^2$$

SIMULATION RESULTS

STL-10 (Training using ~100k images, test using 8k images)

pinv: 22.0 ± 2.2 dB *comp*: 23.5 ± 2.2 dB *pinvNET*: 23.6 ± 2.2 dB *compNET*: 24.1 ± 2.3 dB *freeNET*: 24.0 ± 2.2 dB

Fluorescence microscopy images (not from STL-10!)

(a) Ground-Truth

(c) Total Variation

 $oldsymbol{f}^* = rgmin_{oldsymbol{f} = oldsymbol{P} oldsymbol{f}} \| oldsymbol{
abla} oldsymbol{f} \|_1$ s.t. $oldsymbol{m} = oldsymbol{P} oldsymbol{f}$

red: PINV + **3.52** dB *green*: PINV + **2.41**dB (b) Pseudo Inverse

(d) compNET

$$egin{argamin} egin{argamin} eta^* = rgmin & \|eta\|_2^2 \ egin{argamin} eta & eta & eta \ eta & eta &$$

red: 27.15 dB *green*: 24.27 dB

 $oldsymbol{f}^* = \mathcal{H}_{oldsymbol{ heta}^*}(oldsymbol{m})$

red: TV + **0.8** dB *green*: TV + **1.16** dB

... Does it work with experimental data?

NOISE IS A BIG ISSUE!

Gaussian Models (hypotheses)

Data Model

Noise Model

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
Noisy
Noisy
Measurement
$$\mathbf{w}^{\alpha} \mid \mathbf{y} \sim \mathcal{N}(\boldsymbol{y}_1, \boldsymbol{\Sigma}_{\alpha})$$
(Noiseless)
Coefficients

> We reconstruct our images by computing

$$oldsymbol{y}^*(oldsymbol{m}^lpha) = \mathbb{E}\left(\mathbf{y}_1, \mathbf{y}_2 \,|\, \mathbf{m}^lpha = oldsymbol{m}^lpha
ight)$$

> Our problem...

$$oldsymbol{y}^*(oldsymbol{m}^lpha) = \mathbb{E}\left(\mathbf{y}_1, \mathbf{y}_2 \,|\, \mathbf{m}^lpha = oldsymbol{m}^lpha
ight)$$

...has the following solution

Denoising Step: Completion Step:

$$oldsymbol{y}_1^*(oldsymbol{m}^lpha) = oldsymbol{\mu}_1 + oldsymbol{\Sigma}_1 [oldsymbol{\Sigma}_1 + oldsymbol{\Sigma}_lpha]^{-1}(oldsymbol{m}^lpha - oldsymbol{\mu}_1)$$

 $oldsymbol{y}_2^*(oldsymbol{m}^lpha) = oldsymbol{\mu}_2 + oldsymbol{\Sigma}_{21} oldsymbol{\Sigma}_1^{-1} [oldsymbol{y}_1^*(oldsymbol{m}^lpha) - oldsymbol{\mu}_1]$
 $oldsymbol{\int}$
Denoised
measurements

DENOISED COMPLETION NETWORK

- Poisson noise model for the raw data
 Measurement (in photons) $\hat{\mathbf{m}}^{\alpha} \mid \mathbf{y} \sim \mathcal{P}(\alpha \, \mathbf{y}_1)$ Image intensity (in photons)
 - Problem I: Such scaling is incompatible with non linear reconstructors
- Noise model for the <u>normalised</u> data
 - Problem #2: the image intensity is unknown
 - Problem #3: does not satisfy the Gaussian assumption
- > <u>Approximate</u> noise model for the <u>normalised</u> data

$$\mathbf{m}^{\alpha} | \mathbf{y} \approx \mathcal{N}(\mathbf{y}_1, \mathbf{\Sigma}_{\alpha})$$
 where $\mathbf{\Sigma}_{\alpha} = \mathsf{Diag}(\mathbf{y}_1 / \alpha)$

Problem #4: The covariance depends on the intensity of the image under acquisition

$$\mathbf{m}^{\alpha} \,|\, \mathbf{y} \sim \frac{1}{lpha} \mathcal{P}(lpha \, \mathbf{y}_1)$$

> Training pipeline, i.e., the full network

* Trained under varying noise levels driven, i.e., $lpha \sim \mathcal{N}(\mu_lpha, \sigma_lpha^2)$

Nicolas Ducros, 22 April 2020 | Deep Learning for Medical Imaging School, CREATIS, Lyon (virtual)

EXPERIMENTAL RESULTS

Ground Truth GT $\tilde{\alpha}$ =148 (a)

GT $\tilde{\alpha} = 195$ (b)

Completion Network

PSNR = 13.79

Completion Network trained with Noise PSNR = 15.65

Denoised Completion Network

PSNR = 16.14

C-NetPSNR = 15.82

NC-Net PSNR = 18.18

Nicolas Ducros, 22 April 2020 | Deep Learning for Medical Imaging School, CREATIS, Lyon (virtual)

EXPERIMENTAL RESULTS

LIMITATIONS

 Processing are sequential (i.e., data domain, followed by measurement domain)

Open questionsInterpretation of the solution

erpretation of the solution

Consistency of the solution

$$\|oldsymbol{m}-oldsymbol{P}_1oldsymbol{f}^*\|^2\leq\epsilon$$

 Link with traditional reconstruction algorithms that solve

$$\min_{\boldsymbol{f}} \|\boldsymbol{m} - \boldsymbol{P}_1 \boldsymbol{f}\|^2 + \mathcal{R}(\boldsymbol{f})$$

ITERATIVE SCHEMES

> Data domain and image domain processings are nested

Many variants

- Unrolled
- Neumann
- * ...

DEEP EXPECTATION MAXIMIZATION

> Simple network architecture, just loop over the previous one

 \boldsymbol{f}_k

[Lorente-Mur et. al, IEEE ISBI, 2021]

DEEP EXPECTATION MAXIMIZATION

We wish to solve

Ground Truth

Gaussian $p(\boldsymbol{f}) \propto \exp \|\boldsymbol{f}\|_2^2 \qquad p(\boldsymbol{f}) \propto \exp \|\boldsymbol{f}\|_1$

Laplace

> We create an image sequence

$$\bar{\boldsymbol{x}}^{(k)} = \underset{\boldsymbol{x}}{\operatorname{argmin}} \|\boldsymbol{P}_{1}\boldsymbol{x} - \boldsymbol{m}^{\alpha}\|_{\boldsymbol{\Sigma}_{\alpha}^{-1}}^{2} + \|\boldsymbol{x} - \boldsymbol{P}\boldsymbol{f}^{(k)}\|_{\boldsymbol{\Sigma}^{-1}}^{2}$$
$$\boldsymbol{f}^{(k+1)} = \underset{\boldsymbol{f}}{\operatorname{argmin}} \|\bar{\boldsymbol{x}}^{(k)} - \boldsymbol{P}\boldsymbol{f}\|_{\boldsymbol{\Sigma}^{-1}}^{2} - \log p(\boldsymbol{f})$$
$$\boldsymbol{f}$$
Latent measurement

> We can learn the unknown term

$$\bar{\boldsymbol{x}}^{(k)} = \underset{\boldsymbol{x}}{\operatorname{argmin}} \|\boldsymbol{P}_{1}\boldsymbol{x} - \boldsymbol{m}^{\alpha}\|_{\boldsymbol{\Sigma}_{\alpha}^{-1}}^{2} + \|\boldsymbol{x} - \boldsymbol{P}\boldsymbol{f}^{(k)}\|_{\boldsymbol{\Sigma}^{-1}}^{2}$$
$$\boldsymbol{f}^{(k+1)} = \mathcal{D}(\boldsymbol{P}^{\top}\bar{\boldsymbol{x}}^{(k)})$$
Image domain network

We recognize the deep completion architecture

Denoising (measurements) Completion (measurements) Update and mapping (image) Denoising (image)

$$egin{aligned} m{y}_1^{(k)} &= m{\sigma}_1^2/(m{\sigma}_1^2 + ilde{m{\sigma}}_lpha^2)(m{m}^lpha - m{P}_1m{f}^{(k-1)}) \ m{y}_2^{(k)} &= m{\Sigma}_{21}m{\Sigma}_1^{-1}m{y}_1^{(k)} \ m{ ilde{f}}^{(k)} &= m{f}^{(k-1)} + m{P}^ opm{y}^{(k)} \ m{f}^{(k)} &= m{D}(ilde{m{f}}^{(k)}) \end{aligned}$$

[Lorente-Mur et. al, IEEE ISBI, 2021]

SIMULATION RESULTS

MoDL

U-Net

Proposed

CONCLUSIONS

Deep reconstruction networks can be interpreted as traditional algorithm in a Bayesian framework

- Deep completion network, as conditional mean
- Deep expectation-maximization network

> Training

- Very dependent on the noise level
- Interpretable architecture are more robust to unseen noise levels
- Noise Adaptive (behaves well for different noise levels)

OPEN SOURCE

- > SPIRiT: a single-pixel image reconstruction toolbox
 - Matlab code for statistical completion <u>https://github.com/nducros/SPIRIT</u>

SPyRiT a single-pixel image reconstruction toolbox (in Python)

- Python package for traditional and deep reconstruction https://github.com/openspyrit/spyrit
- Python scripts for traditional and deep reconstruction <u>https://github.com/openspyrit/spyritexamples</u>

Hands-on session in part of it

https://github.com/openspyrit/spyritexamples/tree/master/2021_DLMIS_Hands-on

ACKNOWLEGDMENTS

> Results

- Pierre LECLERC
- ✤ Antonio LORENTE MUR
- Laurent MAHIEU-WILLIAME
- Bruno MONTCEL
- Françoise PEYRIN

- > Hands-on
 - ✤ Antonio LORENTE MUR
 - Theo LEULIET
 - Louise Friot-Giroux
 - Thomas GRENIER

See you at the hands-on session!