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General context Hyperspectral imaging is crucial in medical imaging because it allows for the precise
identification and analysis of different biomolecules and tissues. This non-invasive technique enables
early disease detection, accurate diagnosis, and effective treatment planning.

However, the acquisition of hyperspectral (x, y, λ)-images, with both high spatial and spectral
resolutions in real time, is excessively challenging. Indeed, hyperspectral imaging implies an acquisition
in 3D using only 2D arrays of sensors, which requires the acquisition to be multiplexed, typically across
time, which imposes a trade-off between the total acquisition time and the spatial or spectral resolution.
The shorter the acquisition time, the lower the spatial or spectral resolution. Moreover, light throughput
is intrinsically reduced in spectral imaging, compared grayscale or few-colour imaging, as light across a
large number of spectral channels. This imposes a trade-off between the total acquisition time and the
noise level. To leverage this compromise and pave the way to real-time high-resolution hyperspectral
imaging, we consider complementary acquisitions.

Complementary acquisitions We have developed a hyperspectral computational imager that mea-
sures linear transformation Y = AX ∈ Rm×ℓ, where A ∈ Rm×n represents the spatial multiplexing
matrix, and X ∈ Rn×ℓ is the hyperspectral image. In practice, such measurements can be taken with
a system based on a digital micromirror device (DMD) and a compact spectrometer. Recently, we
complemented our system with a traditional camera that measures Z = XB ∈ Rn×c, where B ∈ Rℓ×c

represents a spectral degradation. While the number of spectral channels of the hyperspectral arm is
large (e.g., ℓ = 2, 048), the number of spectral channels of the traditional camera is small, e.g., c = 1
(grayscale image) or 3 (RGB image). In our system, the different rows of A are uploaded sequentially
onto the DMD. Therefore, we must choose M ≤ N to limit the acquisition time, which in turn degrades
the spatial resolution.

Objective After the complementary acquisition of a pair (Y, Z), one needs to reconstruct the hy-
percube X given the pair of direct models (A, B), which is an ill-conditioned inverse problem. In-
verse problems have been extensively studied in the past decades. First based on the optimization of
hand-crafted functionals, their resolution now benefits from the advances of the ‘artificial intelligence’
framework [1, 2]. A simple yet powerful strategies consists in the supervised training of neural network
(e.g., UNet or CNN) that post-process the reconstruction obtained using a ‘standard’ (e.g., pseudo
inverse) solution.

In this thesis, we will rather focus on i) the design on the direct model A and ii) reconstruction
methods where A is not known in advance. This problem is related to the choice of projection matrix
design in compressed sensing, where sparsity is used as a signal prior. While compressed sensing is non
adaptive, the adaptive design of A has remained largely unexplored. Here, we intend adaptive designs
as the design of A adapted to the complementary image Z. E.g.,

A ∈ argmin
A

f(A; Z), (1)
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where the function f is a quality criterion to be defined. To simplify the analysis, the quality criterion can
rely on a predetermined reconstruction operator R that estimates X from (Y, Z) or even from Y only
(e.g., R = (A⊤A)−1A⊤). However, our ultimate goal will be to design both A and a reconstruction
operator RA associated to it.

Existing work on the topic includes [3, 4] where the authors consider jointly signal priors (e.g.,
sparsity) and noise levels to design the sensing matrix. More recently, [5, 6] proposed techniques
where the matrix A is designed in an adaptive manner during the acquisition process. Deep learning
based-approaches have been proposed for reconstruction (e.g., see [7] in hyperspectral imaging or [8]
in magnetic resonance imaging).

General framework The reconstruction problem can be set in the more general framework of multi-
modality imaging [9]

y ∼ Ny(Ax1) (2a)
z ∼ Nz(Bx2) (2b)

where N represents the stochastic errors of the acquisition process. Traditional reconstruction tech-
niques (a.k.a. pansharpening in remote sensing [10]) solve

argmin
x1,x2

α D(y − Ax1) + βD(z − Bx2) + γS(x1, x2), (3)

where D is a similarity measure, S is a regularization term that favors certain signals and α, β, γ
balance the contribution of the different terms. This general framework includes hyperspectral single-
pixel imaging, SPECT/CT, cryo-ET/X-ray tomography, correlative light-electron microscopy, etc.

Preliminary results In a series of works, we have proposed various reconstruction methods under the
hypothesis that the acquisition matrix A is a Hadamard matrix [11, 12, 13]. Given homoscedastic noise,
Hadamard matrices minimize the trace of the covariance matrix of the residual error, a property known
as Fellgett’s advantage [14]. In general, obtaining higher resolution reconstruction of the unknown
signal/image can be done by i) using super-resolution techniques (e.g. structured illumination), or ii)
leveraging redundancy across frequency thanks to deep learning. We have shown that the later can be
done in an efficient and robust manner [15, 16]. When no training dataset is available, we can estimate
the optimal sampling scheme while reconstructing the unknown signal(s). NeRF-like parametrization
appear as a promising choice for regularizing the associated ill-posed inverse problem [17].

Skills We are looking for an enthusiastic and autonomous candidate with a strong background in
applied mathematics (statistics, optimization), signal/image processing and machine learning. The
applicant can be enrolled in either a Master or Engineering degree program.

How to apply? Please send a curriculum, a motivation letter, and your academic records before May
19th to nicolas.ducros@creatis.insa-lyon.fr and valentin.debarnot@creatis.insa-lyon.fr

Expected beginning date September 2025. The precise starting date can be adjusted according to
the availability of the selected candidate.

References

[1] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm Unrolling: Interpretable, Efficient Deep Learning for
Signal and Image Processing,” IEEE Signal Processing Magazine, vol. 38, pp. 18–44, Mar. 2021.

[2] J. Zhang, B. Chen, R. Xiong, and Y. Zhang, “Physics-Inspired Compressive Sensing: Beyond deep
unrolling,” IEEE Signal Processing Magazine, vol. 40, pp. 58–72, Jan. 2023.

mailto:nicolas.ducros@creatis.insa-lyon.fr,valentin.debarnot@creatis.insa-lyon.fr


[3] O. Cossairt, M. Gupta, and S. K. Nayar, “When Does Computational Imaging Improve Perfor-
mance?,” IEEE Transactions on Image Processing, vol. 22, pp. 447–458, Feb. 2013.

[4] K. Mitra, O. Cossairt, and A. Veeraraghavan, “Can we beat Hadamard multiplexing? Data driven
design and analysis for computational imaging systems,” in 2014 IEEE International Conference
on Computational Photography (ICCP), (Santa Clara, CA, USA), pp. 1–9, IEEE, May 2014.

[5] V. Saragadam and A. C. Sankaranarayanan, “KRISM—Krylov Subspace-based Optical Computing
of Hyperspectral Images,” ACM Transactions on Graphics, vol. 38, pp. 148:1–148:14, Oct. 2019.

[6] V. Saragadam, M. DeZeeuw, R. G. Baraniuk, A. Veeraraghavan, and A. C. Sankaranarayanan,
“SASSI — Super-Pixelated Adaptive Spatio-Spectral Imaging,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 43, pp. 2233–2244, July 2021.

[7] H. Garcia, C. V. Correa, and H. Arguello, “Optimized Sensing Matrix for Single Pixel Multi-
Resolution Compressive Spectral Imaging,” IEEE Transactions on Image Processing, vol. 29,
pp. 4243–4253, 2020.

[8] T. Bakker, H. van Hoof, and M. Welling, “Experimental design for mri by greedy policy search,”
Advances in Neural Information Processing Systems, vol. 33, pp. 18954–18966, 2020.

[9] S. R. Arridge, M. J. Ehrhardt, and K. Thielemans, “(An overview of) Synergistic reconstruction for
multimodality/multichannel imaging methods,” Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 379, p. 20200205, May 2021.

[10] L. Loncan, L. B. de Almeida, J. M. Bioucas-Dias, X. Briottet, J. Chanussot, N. Dobigeon, S. Fabre,
W. Liao, G. A. Licciardi, M. Simões, J. Tourneret, M. A. Veganzones, G. Vivone, Q. Wei, and
N. Yokoya, “Hyperspectral Pansharpening: A Review,” IEEE Geoscience and Remote Sensing
Magazine, vol. 3, pp. 27–46, Sept. 2015.

[11] A. Lorente Mur, P. Leclerc, F. Peyrin, and N. Ducros, “Single-pixel image reconstruction from
experimental data using neural networks,” Optics Express, vol. 29, pp. 17097–17110, May 2021.

[12] A. Lorente Mur, F. Peyrin, and N. Ducros, “Deep Expectation-Maximization for Single-Pixel Image
Reconstruction With Signal-Dependent Noise,” IEEE Transactions on Computational Imaging,
vol. 8, pp. 759–769, 2022.

[13] J. F. P. J. Abascal, S. Bussod, N. Ducros, S. Si-Mohamed, P. Douek, C. Chappard, and F. Peyrin,
“A residual U-Net network with image prior for 3D image denoising,” in 2020 28th European Signal
Processing Conference (EUSIPCO), pp. 1264–1268, Jan. 2021.

[14] E. D. Nelson and M. L. Fredman, “Hadamard Spectroscopy,” JOSA, vol. 60, pp. 1664–1669, Dec.
1970.

[15] A. Khorashadizadeh, A. Chaman, V. Debarnot, and I. Dokmanić, “Funknn: Neural interpolation
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