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Abstract—Available super-resolution techniques for 3D images
are either computationally inefficient prior-knowledge-based it-
erative techniques or deep learning methods which require a
large database of known low- and high-resolution image pairs.
A recently introduced tensor-factorization-based approach offers
a fast solution without the use of known image pairs or strict
prior assumptions. In this article this factorization framework
is investigated for single image resolution enhancement with
an off-line estimate of the system point spread function. The
technique is applied to 3D cone beam computed tomography
for dental image resolution enhancement. To demonstrate the
efficiency of our method, it is compared to a recent state-of-
the-art iterative technique using low-rank and total variation
regularizations. In contrast to this comparative technique, the
proposed reconstruction technique gives a 2-order-of-magnitude
improvement in running time – 2 minutes compared to 2 hours
for a dental volume of 282×266×392 voxels. Furthermore, it
also offers slightly improved quantitative results (peak signal-
to-noise ratio, segmentation quality). Another advantage of the
presented technique is the low number of hyperparameters. As
demonstrated in this paper, the framework is not sensitive to
small changes of its parameters, proposing an ease of use.

Index Terms—3D super-resolution, single image super-
resolution, tensor factorization, cone beam computed tomogra-
phy, dental application

I. INTRODUCTION

ROOT canal treatment is carried out on a regular basis in
dental centers in order to save decayed and infected teeth.

In spite of their popularity, the success rate of the treatment is
only 60-85% [1], [2]. For an improvement of the process the
dentists need a better visualization of the canal, as its length,
diameter and curvature are all important factors for planning
the therapy [3]. Therefore, further research on the visualization
possibilities of the pulp cavity is necessary, as stated by the
European Commission on Radiation Protection in 2012 [4, pp.
61-65].
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J. Hatvani, and M. Gyöngy are with the Faculty of Information Technology
and Bionics, Pazmany Peter Catholic Unviersity, Budapest Hungary

J. Y. Tourneret is with IRIT/INP-ENSEEIHT/Tésa, University of Toulouse,
France.

Dental offices use cone beam computed tomography
(CBCT) for determining the 3D structure of the teeth. In
2017 80.30% of US endodontists had access to a CBCT
machine, and 50.69% of them had this equipment on-site [5].
These numbers are constantly increasing around the world.
Apart from the detector size, the spatial resolution of such
imaging devices is also affected by partial volume effect
and noise. System blur is caused by the response of the
scintillator detector, the focal spot size of the x-ray, or the
reconstruction algorithm, resulting in a typical resolution value
of 500 µm. This resolution is not sufficient in endodonty since
the diameter of the canal is usually in the range of 0.16-1.60
mm and the apical, narrower segment is more important for
planning the treatment [6]. On the other hand, the resolution of
micro-CT (µCT) is sufficient for precise measurements on the
cavity, but the physical dimensions of the system only permit
the imaging of extracted teeth. The long acquisition time and
high radiation dose also prohibit in vivo measurements.

Post-processing super-resolution (SR) can ensure a compro-
mise between the CBCT which is available for clinical routine
but has low resolution and µCT which has a high resolution
but is not suitable for clinical use. SR makes it possible to
enhance the resolution of CBCT images, without any change
of the imaging device. Application of SR algorithms has
been intensively investigated field in the image processing
community. Classical SR techniques can combine informa-
tion from a sequence of measurements [7], from different
modalities [8], or in the simplest case they try to improve the
resolution of a single image [9]. Many SR methods assume
that the low resolution (LR) image of interest is obtained from
the high resolution (HR) image by blurring and decimation
with a residual additive noise. The SR problem can then
be formulated as an inverse problem, which is ill-posed and
thus requires an appropriate regularization to provide suitable
solutions. A standard regularization often employed is total
variation (TV) leading to piecewise smooth solutions [10].
Low-rank [11], or wavelet representations [12] have also
proved to be efficient tools for SR. A method based on a sparse
representation was applied to 3D MRI images with a patch-
based structural similarity constraint in [13]. Convolutional
neural networks have also shown interesting properties for SR,
where the network is trained to map an LR image to its HR
counterpart [14]–[17]. However, this technique requires a large
training dataset, which is not always available. Furthermore,
only a few of the above-mentioned techniques is available
for 3D volumes (e.g., [11], [13], [14]), and they all suffer
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from heavy computational costs, preventing them to be used
in practical applications.

A new hyperspectral-multispectral image fusion technique
using tensor factorization (TF) was introduced in [18]. This
technique combines a multispectral image (with high spatial
and low spectral resolutions) and a hyperspectral image (with
low spatial and high spectral resolution) to obtain an SR
image (with high spatial and high spectral resolutions). One
advantage of the tensor-based method of [18] is that it does
not need to unfold the image of interest into a 2D matrix as
in many existing SR methods [11], [17]. As a consequence,
this method avoids any loss of information about the locality
of the image pixels and does not require to introduce spatial
regularization (such as the TV of the image).

This paper investigates a 3D single image SR (SISR)
method based on TF, which can be used in various appli-
cations where the resolution enhancement of image volumes
is required. To the best knowledge of the authors, this is the
first time that a TF-based method is utilized for SISR. The
idea is to decompose the image of interest using its canonical
polyadic decomposition (CPD). The CPD of a tensor is a
representation based on a sum of an appropriate number of
rank-1 tensors, whose number depends on the image structure.
It will be shown in this paper that this representation leads
to a notably fast and efficient reconstruction method. The
described method is compared to a state-of-the-art iterative
deconvolution technique with low-rank and TV regularization
(LRTV). In order to evaluate the proposed method LR CBCT
dental images were chosen in an attempt to estimate their HR
µCT counterparts. For validation the peak signal-to-noise ratio
(PSNR) is calculated and the canal is segmented, permitting
volumetric and diametric comparison.

The rest of this paper is organized as follows. First, the ten-
sor operations used in this paper are defined and a connection
between image complexity and tensor decomposition is drawn.
In Section III the proposed TF-SISR method is first defined for
the CBCT resolution enhancement problem, followed by the
data acquisition and the estimation of the blurring point spread
function (PSF), ending with the introduction of the evaluation
metrics. Section IV compares the images obtained by the two
different SISR methods and discusses the possibilities and
limits of tensor factorization. Finally a conclusion is drawn
about the applicability of the introduced SR technique to dental
imaging with some possible future work.

II. TENSORS AND IMAGE COMPLEXITY

A. Notations

For easier distinction, 2D matrices are denoted using up-
percase letters (e.g., A) and 3D tensors by bold uppercase
letters (e.g., A). The uppercase letter with an overline (eg.,
A) denotes a set of 2D matrices.

B. Factorization, mode product, matricization

In this section, operations from tensor algebra necessary for
the proposed method are summarized. Readers may refer to
[18] and [19] for further details.

A tensor is a generalization of vectors and matrices, where
the order of the tensor indicates the dimensionality. A 3D CT
image volume is a third-order tensor X ∈ RI×J×K from
which one dimensional fibers can be extracted. Depending on
which indices are fixed, there are mode-1 fibers denoted as
X(:, j, k) vectors (columns), mode-2 fibers denoted as X(i, :
, k) vectors (rows) and mode-3 fibers denoted as X(i, j, :)
vectors. The outer product (denoted by ◦) between one mode-
1, one mode-2 and one mode-3 array forms a rank-1 third
order tensor, written as

X = u ◦ v ◦ w,
u ∈ RI , v ∈ RJ , w ∈ RK ,X ∈ RI×J×K

where
X(i, j, k) = u(i)v(j)w(k).

(1)

The smallest number of rank-1 tensors that can sum up to
form the tensor X is called the tensor rank of X , denoted by
F . The resulting factorization of X is called the CPD of X
expressed as

X =

F∑
f=1

U1(:, f) ◦ U2(:, f) ◦ U3(:, f)

where

X(i, j, k) =

F∑
f=1

U1(i, f)U2(j, f)U3(k, f).

(2)

U =
{
U1, U2, U3

}
is a set of three 2D matrices,{

U1 ∈ RI×F , U2 ∈ RJ×F , U3 ∈ RK×F}, known as the de-
composition of the tensor X . For illustration, the reader may
refer to Fig. 1. In the following, the operation in (2) will be
denoted as

[[U1, U2, U3]] =

F∑
f=1

U1(:, f) ◦ U2(:, f) ◦ U3(:, f). (3)

Fig. 1. Illustration of tensor factorization. F is the number of outer products
formed by mode-1 (U1

i := U1(:, i)), mode-2 (U2
i := U2(:, i)) and mode-3

(U3
i := U3(:, i)) fibers summing up to a rank-F tensor.

An important property of the CPD is that this decom-
position is essentially unique (allowing permutations within
U1, U2, U3). Thus U can be identified almost surely if its
tensor rank F is smaller than an upper bound. Chiantini et al.
[20] proved that if I ≥ J ≥ K, with F ≤ 2blog2Jc+blog2Kc−2,
the CPD of the rank-F tensor X ∈ RI×J×K is essentially
unique. This condition allows identifiability of the CPD even
for tensors with high rank. For example, in the application
addressed herein, a typical CBCT volume with 260×260×300
pixels can be decomposed uniquely even if the tensor rank of
the image is as high as 214 = 16384.
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Next, the multiplication between a 2D matrix and a 3D
tensor referred to as the mode product is defined. This multi-
plication can be performed along all three dimensions, and in
each case the mode-n fibers of the tensor are extracted and are
pre-multiplied by the matrix one-by-one. The mode-n products
(n ∈ {1, 2, 3}) of X ∈ RI×J×K with P1 ∈ RI∗×I , P2 ∈
RJ∗×J , P3 ∈ RK∗×K are denoted as ×n, and are defined as

X ×1 P1 =X1 ∈ RI∗×J×K

where X1(:, j, k) = P1X(:, j, k)

X ×2 P2 =X2 ∈ RI×J∗×K

where X2(i, :, k) = P2X(i, :, k)

X ×3 P3 =X3 ∈ RI×J×K∗

where X3(i, j, :) = P3X(i, j, :)

(4)

where I∗, J∗,K∗ are arbitrary integer numbers. In Fig. 2, the
principle of the mode-1 product, X×1P1 = X1 is illustrated,
where the columns of the tensor are premultiplied by P1,
leading to a shrinkage along the first dimension.

Fig. 2. Illustration of the mode-1 product. The mode-1 fibers of the 3D tensor
are extracted and pre-multiplied by the 2D matrix. This example can illustrate
a downsample operation with rate 2 in the first dimension.

Using the factorization of X in (2) and (3) the mode-n
products can also be written as

X ×1 P1 ×2 P2 ×3 P3 = [[P1U
1, P2U

2, P3U
3]]. (5)

Finally, the matricization or unfolding of the tensor X ∈
RI×J×K from 3D to 2D is defined. Note that this matricization
can be realized again along the three dimensions. For a mode-
n matricization the mode-n fibers are extracted and form the
columns of X(n) in lexicographical order expressed as

X(1)=[X(:, 1, 1),X(:, 2, 1), ...
X(:, J, 1),X(:, 1, 2)...,X(:, J,K)]

X(1) ∈ RI×JK

X(2)=[X(1, :, 1),X(2, :, 1), ...
X(I, :, 1),X(1, :, 2)...,X(I, :,K)]

X(2) ∈ RJ×IK

X(3)=[X(1, 1, :),X(2, 1, :), ...
X(I, 1, :),X(1, 2, :)...,X(I, J, :)]

X(3) ∈ RK×IJ .

(6)

The same operation can be realized using the decomposition
U of X . For this the Khatri-Rao product – denoted as � – is
necessary. It operates on matrices having the same number of
columns, and calculates their column-wise Kronecker-product

(A � B = C, where A ∈ RI×F , B ∈ RJ×F , C ∈ RIJ×F ).
Using this notation the matricization can be written as

X(1) = U1(U3 � U2)T

X(2) = U2(U3 � U1)T

X(3) = U3(U2 � U1)T .

(7)

C. Connection between the tensor rank and the image com-
plexity

The tensor rank is related to the complexity of the image,
in the sense of piecewise constant volumes and dependency
between fibers. To explain this claim, an illustrative set of
examples is provided in Fig. 3. In these examples the notations
and dimensionality of (1) are used with I = J = K = 2. Fig.
3 a) shows that the image with a single dark pixel (representing
1) in the white volume (representing 0) has a tensor rank of
F = 1. More precisely

ua ◦ va ◦ wa = [1, 0] ◦ [0, 1] ◦ [1, 0] = Xa

X(3)
a =

[
0 1 0 0
0 0 0 0

]
.

(8)

In Fig. 3 b), two neighboring pixels are dark. This does not
change the complexity of the image, since one outer product
can still describe this volume. Indeed, we have

ub ◦ vb ◦ wb = [1, 0] ◦ [0, 1] ◦ [1, 1] = Xb

X
(3)
b =

[
0 1 0 1
0 0 0 0

]
.

(9)

In Fig. 3 c), two fibers are linearly dependent with
2×[21,35]=[42,70], which also makes one outer product suf-
ficient for decomposing the tensor since

uc ◦ vc ◦ wc = [5, 3] ◦ [1, 2] ◦ [7, 0] = Xc

X(3)
c =

[
35 70 0 0
21 42 0 0

]
.

(10)

This set of illustrative examples shows that for images with
piecewise constant regions (like the neighboring cells in Fig.
3 b)) or with low matrix rank (as the linearly dependent
fibers in Fig. 3 c)) a smaller tensor rank can be expected.
More generally, the tensor decomposition (2) tends to promote
solutions with small tensor ranks. This property is useful
in the case of denoising, when independent outlier pixels

Fig. 3. Tensor rank and image complexity. In example a) a single dark pixel
(representing 1) in the white (representing 0) volume can be expressed by
one outer product. In b) two neighboring pixels are dark, making one outer
product sufficient for their description. In c) the pixel value is printed on the
cell, equals 0 if not present. Two fibers are linearly dependent (2× [21,35] =
[42,70]), so the volume can be decomposed using a tensor rank of F = 1.
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have to be eliminated. A degraded image may contain larger
constant areas, with higher dependency between neighboring
rows and columns. It means that describing these images will
also be more efficient with a tensor of small rank. Thus these
simple examples allow us to understand why CBCT images
can be represented by a reduced number of rank-1 tensors,
allowing identifiability of the decomposition. Exploring the
domain of medical images that are of low tensor rank (thus
are identifiable using TF-SISR) could be a future direction of
research.

III. METHODS

A. Problem formulation

The image degradation model considered herein is the one
classically used in SISR methods. It relates the LR image
(CBCT in the case of the current dental application) to an HR
image (considered to be close to the µCT). The HR image
X ∈ RI×J×K is corrupted by a decimation operator D with
rate r, a blurring kernel H , and some added noise N , resulting
in the LR image Y ∈ RI/r×J/r×K/r such that

vec(Y ) = DHvec(X) + vec(N) (11)

where vec(·) vectorizes the elements of the 3D tensor in
lexicographical order. We assume that H ∈ RIJK×IJK

is the block-circulant version of the 3D Gaussian kernel
h to avoid circular convolution. A 3D Gaussian kernel h
is separable along the three dimensions to 1D kernels as
h = h1 ◦ h2 ◦ h3 and is usually assumed for a blurring PSF
[21]. For Gaussian kernels h1, h2, h3 with standard deviations
σ1, σ2, σ3 the corresponding block-circulant matrices are H1 ∈
RI×I , H2 ∈ RJ×J , H3 ∈ RK×K . The decimation operator
downsamples the image by an integer number, by averaging
blocks of r neighboring pixels in each direction. In matrix
form the downsampling operators for the three dimensions are
D1 ∈ RI/r×I , D2 ∈ RJ/r×J , D3 ∈ RK/r×K . This formula-
tion of D corresponds for instance to the physical process of
a large CBCT detector element collecting rays over a larger
area, than µCT does. This matrix also has better inversion
properties compared to the regular decimation operator which
discards pixels at a rate r. An experimental validation of this
degradation model can be seen in the Appendix.

Let U =
{
U1 ∈ RI×F , U2 ∈ RJ×F , U3 ∈ RK×F} be the

CPD of X . The image degradation problem can be rewritten
following (5) using the separated kernels

Y = X ×1 D1H1 ×2 D2H2 ×3 D3H3 +N

= [[D1H1U
1, D2H2U

2, D3H3U
3]] +N .

(12)

The SR task can be defined as finding the set of matrices U
which is the solution of the following minimization problem

min
U

∥∥Y − [[D1H1U
1, D2H2U

2, D3H3U
3]]
∥∥2
F

(13)

where ‖·‖F denotes the Frobenius norm of a tensor defined as
the square root of the sum of its squared elements. This cost-
function is different from the minimization problem of [18] in
the following aspects. First, only one measured datavolume is
used here in contrast to the two measurements in the fusion

problem of [18]. Second, here the degradation happens in all
three dimensions between the HR and LR image, while in
[18] the hyperspectral measurement is degraded in the first two
dimensions, the multispectral volume in the third dimension.

As problem (14) is NP-hard an alternating optimization
method is investigated, minimizing the cost function in (14)
sequentially for U1, U2, U3. Building a tensor from its de-
composition (2) consists of a summation of F outer products.
Minimizing this sum would result in the sum of F (F−1)

2 + F
terms, leading to a complex cost-function. To see this remem-

ber that
(∑F

i=1 ai

)2
consists o fF (F−1)

2 terms of 2aiaj (with
i 6= j) and F terms of a2i . Instead when minimizing over Un,
the tensors are mode-n-matricized using (6) and (7) leading to

min
U1

1

2

∥∥∥Y (1) −D1H1U
1(D3H3U

3 �D2H2U
2)T
∥∥∥2
F

min
U2

1

2

∥∥∥Y (2) −D2H2U
2(D3H3U

3 �D1H1U
1)T
∥∥∥2
F

min
U3

1

2

∥∥∥Y (3) −D3H3U
3(D2H2U

2 �D1H1U
1)T
∥∥∥2
F
.

(14)

Note that the unfolding is performed in each direction sequen-
tially, conserving the 3D local information. The three mini-
mizations in (14) are solved using the least-square estimator
with a Tikhonov regularization leading to

U1 = (D1H1)
+Y (1)(D3H3U

3 �D2H2U
2)+T

U2 = (D2H2)
+Y (2)(D3H3U

3 �D1H1U
1)+T

U3 = (D3H3)
+Y (3)(D2H2U

2 �D1H1U
1)+T

(15)

This least-square solution is obtained by +, the Moore-Penrose
pseudo-inverse, which is defined as

A+ = (ATA+ ε2I)−1AT (16)

where ε is a hyper-parameter used to provide a stable in-
verse (this procedure is classically referred to as Tikhonov
regularization [22]). Note that this standard inversion method
provided good results for the application considered in this
paper. However, other solutions could be of interest and would
deserve to be investigated in future work.

The proposed TF-SISR method was implemented using the
following functions from the TensorLab toolbox [23] in Matlab
2017b: the tensor structure, the Khatri-Rao product, the CPD
initialization and the bulding of a tensor from its CPD. In the
algorithm U was initialized with elements from the standard
normal distribution and U1, U2, U3 were updated iteratively
several times as described in Algo. 1.

B. Data acquisition

The dataset used for testing contains images of 13 teeth
which were extracted for health reasons and donated anony-
mously for research. This set consists of all different tooth
types, including incisors, canines, premolars and molars. A
Carestream 81003D system was used for CBCT imaging. The
linewidth resolution of the CBCT machine was 500 µm and
the volumes had a voxel size of 80× 80× 80 µm3.

For evaluation purposes the reconstructed HR images were
compared to µCT images acquired from the same samples. The
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Algorithm 1 TF-SISR algorithm

Input: Y ∈ RI/r×J/r×K/r, F, [σ1, σ2, σ3], r
1: Initialize U =

{
U1 ∈ RI×F , U2 ∈ RJ×F , U3 ∈ RK×F}

with normally distributed values
2: D1, D2, D3 ← decimation operator with a factor r

3:
H1, H2, H3 ← Gaussian kernels with standard

deviations [σ1, σ2, σ3]
4: while stopping criteria is not met do
5: U1 ← Y (1), U2, U3

6: U2 ← Y (2), U1, U3 . update using (15)
7: U3 ← Y (3), U1, U2

8: end while
9: X ← U . build using (2)

Output: X , the estimated high resolution image

µCT acquisitions were obtained with a Quantum FX system
from Perkin Elmer, with a voxel size of 40×40×40 µm3 and
linewidth resolution of 50 µm.

C. PSF estimation

The proposed method in Algo. 1 assumes that the PSF is
known. In practice the blurring kernel has to be measured or
estimated, which is usually carried out empirically in many
existing works [10]. Here the blurring kernel was assumed
to be Gaussian and its standard deviation was estimated
from the observed data. Employing direct inverse filtering
on each sample image, the µCT volume was divided by the
CBCT volume in the frequency domain to obtain the Fourier
transform of the PSF. The high-frequency band was suppressed
by a Hanning-window before computing the inverse Fourier-
transform and averaging the 13 estimated PSFs. For further
details see [17]. Finally a 3D Gaussian function was fitted to
the averaged PSF to estimate the standard deviations σ1, σ2
and σ3.

D. Metrics

The comparison of the image volumes was carried out
through two metrics. The first one measures the PSNR between
the estimated SR CBCT and µCT volumes. It is calculated by
dividing the square of the dynamic range with the mean square
error between the enhanced image and the µCT image (whose
values have been normalized between 0 and 1), expressed in
dB.

The second, more application oriented metric consists of
comparing volumes segmented from µCT and SR CBCT.
The canal root was segmented with a dedicated adaptive
local thresholding method (see [24] for details). The canal
area and Feret’s diameter (the longest distance between two
parallel straight lines that are tangent to the shape) were
calculated for each radicular axial slice. The measured values
are compared through the mean of absolute differences. The
differences of the canal volumes were also measured using
the Dice coefficient [25]. Finally MeVisLab [26] was used for
visualizing the segmentation results.

IV. RESULTS

A. Comparison to an existing 3D SR method

The state-of-the-art LRTV introduced in 2013 in [11], [27]
was used as a benchmark to compare the performance of
the proposed method1. Among the relatively small collection
of 3D SISR techniques, LRTV provided competitive results
compared to other popular methods (cubic interpolation, non-
local means, TV-based up-sampling) [11]. It uses low-rank and
total-variation regularizers, minimizing the following
cost-function

X̂ =argmin
X

‖DHX − Y ‖2

+ λRRank(X) + λTV TV(X),
(17)

where λR and λTV are hyperparameters. The minimization
problem 17 is solved by the alternating direction method of
multipliers (ADMM), which requires to adjust two additional
hyperparameters, the penalty term ρ and an iteration number
nADMM. One of the subproblems within the ADMM scheme is
solved by gradient descent with an additional iteration number
ngrad and an update rate denoted as dt.

The parameters used for testing can be seen in Table I. They
were tuned manually to get the highest possible improvement
of the PSNR. The tests were run on a standard PC with an
Intel(R) Core(TM) i7 2×2.5GHz processor and 16 GB of
RAM.

The two methods were tested for three samples from the
dataset, including an incisor, a premolar and a molar. The
sizes of the sample volumes, the PSNR calculated against
the µCT images and the execution times are provided in
Table II. Compared to the CBCT images the PSNR improves
similarly for the LRTV (average of 1.2 dB) and the TF-SISR
(average of 1.5 dB) methods with the chosen parameters.
However, this enhancement is achieved at a much lower
computational cost: 10 iterations of TF-SISR run 100 times
faster than 5 iterations of LRTV. This faster execution time
is important since it permits a wider range of applications,
including those requiring a rapid diagnosis during a medical
examination. In Fig. 4, the quality of the enhanced volumes
is visualized, showing that the canal is better defined and
contrasted compared to the CBCT image, suggesting better
segmentation properties.

For further analysis the root canal was segmented from each
volume, using the segmentation method described in Section

TABLE I
PARAMETERS

LRTV TF-SISR
nADMM = 5 nTF = 10

σ = [5.8, 5.3, 0.9] σ = [5.8, 5.3, 0.9]
λTV = 0.02 F = 500
λR = 0.05 ε = 1
ρ = 0.05
ngrad = 100
dt = 0.05

1The Matlab code associated with LRTV is available at
https://bitbucket.org/fengshi421/superresolutiontoolkit

https://bitbucket.org/fengshi421/superresolutiontoolkit
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Fig. 4. Results on Sample #1. In the rows the CBCT, LRTV output, TF-SISR
output and µCT images can be seen, whereas the columns correspond to one
axial, a coronal and a sagittal slice. The CBCT image is shown at the higher
scale of the HR images, for better comparison. The location of the slices
within the volume is illustrated on the CBCT images in colored lines.

III-D. Qualitative and quantitative results are provided in Fig.
5 and in Table III.
In particular, Table III shows differences between the estimates
and the values obtained using the µCT image for three param-
eters (Feret diameter, area of the canal and Dice coefficient).
The estimated Feret diameter improves similarly with both SR
techniques compared to the CBCT images with an averaged
improvement of 63 µm for LRTV and 81 µm for TF-SISR. The
second line of the table shows how the area of the canal on
the axial slices is changing from one method to another. Note
that the LRTV method shows a higher difference compared
to the original CBCT (by 0.0256 mm2), suggesting that the
TV regularization overestimates the canal. This observation
is also confirmed in Fig. 5, as the LRTV volumes have
a more blueish color corresponding to positive differences.
The TF-SISR provides the best overall performance with an
improvement of 0.0152 mm2 on average. The last metric in the
table is the Dice-coefficient, also showing some improvement

TABLE II
TEST RESULTS

Sample #1 Sample #2 Sample #3
tooth type upper incisor lower premolar lower molar
µCT image size 282×266×392 280×268×492 324×306×402
CBCT PSNR 23.17 dB 22.67 dB 24.14 dB
LRTV PSNR 24.32 dB 24.65 dB 24.61 dB
TF-SISR PSNR 24.32 dB 24.48 dB 25.71 dB
LRTV time 6988 s 9059 s 10301 s
TF-SISR time 71 s 92 s 104 s

Fig. 5. Segmentation results for CBCT, LRTV and TF-SISR for the 3 samples.
The color-bar visualizes the distance between the estimated surface of the
canal and the one obtained with µCT segmentation.

in the overlap of the canals, by 1% using the LRTV and 2%
with the TF-SISR. Fig. 5 displays zoomed-in sections of the
apical part of the canal, as this part is the most important
during the treatment. Considering these results, the TF-SISR
method shows slightly better segmentation properties than the
LRTV technique, while offering a great reduction in running
time.

B. Adjusting the parameters of the TF-SISR method

The impact of the tensor rank and the iteration number
was investigated using Sample #1. Fig. 7 a) shows that the

TABLE III
CANAL SEGMENTATION METRICS

method Sample #1 Sample #2 Sample #3 mean
Mean of

Diff. - Feret
(µm)

CBCT 96 89 341 176
LRTV 74 71 196 113
TF-SISR 50 57 177 95

Mean of
Diff. - Area

(mm2)

CBCT 0.0463 0.0461 0.2492 0.1139
LRTV 0.0914 0.0920 0.2350 0.1395
TF-SISR 0.0447 0.0271 0.2243 0.0987

Dice
coefficient

CBCT 0.88 0.88 0.90 0.88
LRTV 0.87 0.88 0.90 0.89
TF-SISR 0.90 0.91 0.91 0.90
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Fig. 6. Effect of the iteration number it and the tensor rank F in the reconstructed images. Sample #1 is visualized through 3 slices from the axial, coronal
and sagittal directions. In panel a) the difference compared to a result obtained after 10 iterations is shown. In case of nTF=10, a second test run was used for
calculating the difference (note that the algorithm has random initialization, therefore different runs result in slightly different outputs). With more iterations
the difference becomes less structured, more random. In panel b) the change with F can be seen: low numbers cause large blocks in the images, and the
higher the tensor rank, the more detailed the output is.

Fig. 7. Effect of the iteration number and the tensor rank on the PSNR and
runtime. The rest of the parameters are as in Table I. In a) the PSNR saturates
after a small number of iterations, while the runtime increases linearly. In b)
the runtime has am exponential growth versus the tensor rank and the PSNR
saturates around F = 500.

runtime increases linearly with the number of iterations, as
expected. Fig. 7 a) also shows that the PSNR converges rapidly
to its maximum value (close to 24.5), which is an interesting
property of the proposed method. Fig. 6 a) shows how the
solutions qualitatively evolve with the iteration number. For
improved visibility the difference from the nTF = 10 case is
shown in the figure. In the case of nTF = 10 a second test was
run, and the difference was calculated compared to this result,
as the random initialization of U results in slightly different
outputs. It can be seen that as the iteration number increases,
the difference becomes less structured: in the third column the
shape of the tooth is almost invisible and it is lost in random
noise.

According to the upper limit of F for a unique CPD,
in the case of Sample #1, F ≤ 214 should be efficient.
However, numbers higher than 2000 caused memory problems,
and were therefore not tested. Fig. 7 b) shows that the

computational time increases exponentially with the rank F
since the algorithm requires the inversion of larger matrices in
U . It can also be seen that the PSNR stabilizes for ranks larger
than F = 500. Some sample images can be seen in Fig. 6 b)
showing that low values of the rank F lead to large constant
blocks in the image, which is characteristic of a low-rank or
TV regularization. For higher numbers finer details become
visible.

Note that our results indicate that neither of the above
parameters have to be estimated precisely. After a small
number of iterations the result converges. F can be considered
as a prior information on the complexity of the image. Using
higher values a more natural result can be obtained, but above
a threshold the method will not give more precise outputs.

V. CONCLUSION

In this work, a tensor-factorization-based method was pro-
posed for the 3D single image super-resolution problem. This
method showed interesting computational advantages com-
pared to currently available regularization-based methods, with
slightly improved image quality compared to the investigated
LRTV technique. The runtime of this method was about
100 times faster than with LRTV, allowing a wider field of
applications. The method also uses significantly less param-
eters (tensor rank and iteration number) that can be easily
adjusted by visual inspection of the reconstruction results.
Dental CBCT volumes used as experimental data showed
improved PSNR and canal-segmentation properties, with mod-
erately better results than the LRTV method. Considering these
results, the method was found to be promising for 3D single
image super-resolution.

The prior information in regularization-based techniques
is often empirical and guides the solution. Future work can
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investigate if such classical priors could be included in this
framework, and whether they would improve the result. As
[18] proposed a solution also for embedded PSF estimation,
its application to TF-SISR could be a potential direction of
further research.

APPENDIX

VALIDATION OF THE IMAGE DEGRADATION MODEL

In order to show the importance of the blurring operator in
our degradation model, the TF-SISR algorithm was applied
with and without considering the blurring kernel. The two
results are summarized in Fig. 8, showing an improved image
quality when using the embedded blurring kernel.

Fig. 8. Reconstruction results obtained with and without the blurring operator.
a) µCT image, b) CBCT image interpolated to have the pixel resolution of
µCT, c) SR image obtained with TF-SISR without the blurring operator H, d)
SR image obtained with the proposed TF-SISR method including the blurring
operator H, e) profiles corresponding to the colored lines in images a-d).
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