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A Discrete Dvnamic Contour Model 
J 

Steven Lobregt and 

Abstruct- A discrete dynamic model for defining contours 
in 2-D images is developed. The structure of this model is a 
set of connected vertices. With a minimum of interaction, an 
initial contour model can be defined, which is then automatically 
modified by an energy minimizing process. The internal energy of 
the model depends on local contour curvature, while the external 
energy is derived from image features. Solutions are presented to 
avoid undesirable deformation effects, like shrinking and vertev 
clustering, which are common in existing active contour models. 
The deformation process stops when a local minimum of the 
energy function is reached. The final shape of the model is a 
reproducible approximation of the desired contour. Results of 
applying the method to computer-generated images, as well as 
clinical images, are presented. 

I. INTRODUCTION 

ANY applications in medical imaging rely on the M definition of object contours. Object contour definition 
can be accomplished in a number of ways: 

Completely Manual: An operator will have to sit before 
a screen and spend a considerable amount of time 
to draw the required contours manually, using some 
kind of pointing device like a mouse or a graphics 
tablet. This requires expert knowledge of the operator 
about the clinical problem, as well as a certain level 
of skill in drawing contours with the available tools. 
Manual definition of contours is a difficult and time 
consuming process which presents a serious bottleneck 
in processing large (three-dimensional) data sets, e.g., 
for diagnostic purposes or therapy planning. Moreover, 
manual contour definition suffers from a very low degree 
of reproducibility [5]. 
Fully Automatic: The techniques which are presently 
available for automatic contouring are not sophisticated 
enough for many typical applications. The use of these 
techniques is therefore restricted to the detection of 
simple contours of specific objects, like endocardial 
contours of the left ventricle. 
Automated First Guess, Followed by Manual Editing: 
The first guess is usually based on simple techniques like 
thresholding or region growing. In the manual editing 
phase, the operator modifies the generated contour, using 
not only image information, but also contextual knowl- 
edge about local anatomy and pathology. This approach 
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is still very time consuming and leads to results that are 
not reproducible. 
Manual Rough Delineation, Followed by Automated 
Contour Definition: The user interaction is now limited, 
since only a rough delineation is required to serve as 
an initial contour. The following automatic contour 
definition process will refine the contour, controlled by 
(possibly) application-specific parameters. The influence 
of the operator on the final result is, in this case, indirect. 
A certain amount of variation in initial contours (for 
instance, drawn by different operators) will still allow 
for the same final result to be produced, provided that 
the same parameter settings are used for the automatic 
contour definition process, leading to a high degree of 
reproducibility. 

The present paper follows an approach as described under 
4), because of the high reproducibility combined with limited 
user interaction. The proposed dynamic contour model may 
serve as a basis for an automated contour definition method. 

Dynamic contour models have become en vogue with the 
Snake model of Terzopoulos and coworkers [2], [4], [9], and 
have, since then, been investigated and applied in various ways 

Terzopoulos’ Snake model builds a deformable contour 
consisting of connected spline segments and lets the contour 
approximate a desired form by minimizing an energy function 
containing intemal and external energy. The internal energy 
is the bending energy of the spline, the external energy is 
calculated by integrating image features, like the presence 
of lines or edges, along the paths of the spline segments. 
User-defined constraints, like springs that pull on the spline 
segments, yield a third energy term: the constraint energy, 
which is used to locally restrict the deformation of the contour 
according to the user’s wishes. 

A more recently introduced contour model is the Geomet- 
rically Deformed Model (GDM) of Miller cf. [6]-[8], [ I l l ,  
which describes a contour as a set of vertices, connected by 
edges. The energy function defined to control the GDM is quite 
different from that of the Snake model: a topology preserving 
energy term, dependent on an estimation of local curvature 
and the distance between a vertex and its neighbors, an image 
event energy term derived from the thresholded pixel values, 
and a locally defined deformation potential driving the vertices 
outward or inward. The energy function is evaluated only for 
the vertex positions, not for the trajectory of the connecting 
edge segments. This makes the model discrete; the length of 
the connecting edges defines, in fact, its resolution. 

Our approach follows the GDM only by adopting the basic 
structure of the model: vertices connected by edges. The 

[61-[81, [ I l l ,  [121, [141-[171. 

02784062/95$04.00 0 1995 IEEE 



LOBREGT AND VIERGEVER: A DISCRETE DYNAMIC CONTOUR MODEL 13 

dynamic process controlling the contour refinement differs in 
nature from that of the GDM, however, and is described in 
terms of forces and force fields acting on the vertices rather 
than in terms of energies. This description of the deformation 
process is completely equivalent with a description in terms 
of (potential) energy contributions [ 11. However, a description 
in terms of forces is more convenient for our discrete model 
because the forces relate directly to the acceleration and 
displacement of the vertices. 

Starting from an initial shape, which is created with a 
minimum of user interaction, the dynamic contour model 
actively modifies its shape, thus approximating some desired 
contour. The driving force behind the shape deformation is 
calculated from intemal forces, derived from the shape of the 
contour model itself, and an external force field, derived from 
some image feature energy distribution. The intemal forces 
will try to minimize local contour curvature, while the extemal 
forces will try to make the model follow a valley or a ridge 
through the “landscape” formed by the image feature. An 
image feature may be simple, like the pixel or voxel gray 
value, or the magnitude of the gray value gradient, but can also 
be quite complex, like those derived by means of differential 
geometry [ 131, [ 181, [ 191. By applying both intemal and 
extemal forces with user definable weight factors, the user 
can determine to either follow the image feature landscape in 
a very global way, or very precisely, or anything in between. 

The deformation process is performed in a number of 
discrete steps, after each of which the situation with regard 
to position, velocity, and acceleration is evaluated for each of 
the vertices. In this evaluation, intemal and external forces on 
a vertex are calculated from the position of the vertex and 
its neighbors. These forces result in an acceleration, which 
changes the velocity of the vertex. This velocity determines the 
displacement of the vertex during the next deformation step. 
After a number of deformation steps, a stable end situation will 
be reached in which there is an equilibrium, which means that 
velocity and acceleration are zero for each vertex. Described 
in terms of energies, this situation represents a local minimum 
of the energy function. 

During deformation, there are two undesirable effects which 
may occur: shrinking of closed models owing to intemal 
forces, and clustering or gathering of vertices in comers of 
the model, owing to extemal forces. We found a solution to 
the first problem in a proper definition of local curvature at the 
vertices, combined with intemal forces that are zero for parts 
of the contour where the curvature is constant. The solution to 
the second problem is found by allowing only locally radial 
vertex displacements. Both issues will be discussed in Section 
11. 

The goal at which our work is aimed is to develop a tool to 
assist the operator with the definition of contours in medical 
images. Such a tool should reduce the required user interaction 
significantly, thereby saving a lot of time, and provide repro- 
ducible results. The method to be developed can be applied 
to any pixel- or voxel-type description of some object space. 
This type of data is routinely generated nowadays by various 
data acquisition modalities in the clinical environment like 
CT, MRI, SPECT, PET, and US. The use of contour finding 
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Fig. 1. The model consists of a set of vertices 1; which are connected by 
edges d,.  Deformation is caused by acceleration forces a, acting on the 
vertices. 

methods like the one described here is, however, not restricted 
to medical applications. Other areas in which deformable 
models have been used are computer graphics and animation 
[3], [lo]. Compared to model independent contour detection 
or extraction methods, the strength of a model-based method 
is that it treats a contour as one single connected object. 
Connectivity of the contour is therefore guaranteed, also in 
image areas where the image features used to find the desired 
contour are locally very weak or even absent. 

In the present work, the 2-D version of the model is 
described. Extension of the model to 3-D images is straight- 
forward, inasmuch as the structure of the model will still be 
edge-connected vertices, and evaluation will still be performed 
locally on vertex positions. 

The organization of the paper is as follows. Section I1 
describes the structure of the model and defines the forces 
which control its behavior; the intemal forces will be described 
in Section 11-A and the extemal force field in Section 11-B. 
A description of the dynamics of the deformation process is 
presented in Section 111-A, and a technique for local resam- 
pling of the contour in Section 111-B. Section IV describes an 
application of the method to a variety of computer-generated 
and clinical images. Section V concludes the paper with a 
brief discussion. 

11. FORCES AND FORCE FIELD 

Fig. 1 presents the basic structure of the model: a contour 
consisting of vertices which are connected by straight line 
segments or edges. The position of a vertex V,  is represented 
by a vector pi, and the edge between V ,  and V,+I by a 
vector di. (We assume the coordinate system to be Cartesian.) 
Deformation is caused by a combination of forces which act on 
the vertices; the resulting acceleration in vertex V ,  is denoted 
by a vector ai. Another property of a vertex, not shown in the 
figure but important for the dynamic behavior of the model, 
is its velocity, denoted by vi for vertex V,. 

The length di of an edge segment represents the local 
resolution of the model: if it is large, the model will not be able 
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Fig. 3. Local curvature cz at the position of a vertex 1; is defined as the 
difference between the directions of the segments that meet in the vertex. 
These directions are defined by the unit vectors d,-l and d, .  

Fig. 2. 
contour curvature. 

The main objective of the internal forces is to minimize the local 

to follow variations of small scale in the image feature energy 
distribution. The length di may change at every deformation 
step, thus causing local variation in the resolution of the model. 
To keep this variation limited, the edge lengths are evaluated 
at regular intervals; where necessary, vertices are removed or 
inserted, thus keeping the model resolution close to a user- 
specified scale. The details of this local resampling process 
will be discussed in Section 111-B. 

A. Internal Forces 
The intemal forces defined in our model are related to the 

local contour curvature, in conformity with existing active 
contour models. The main objective of introducing intemal 
forces or energy functions is to minimize local curvature (see 
Fig. 2), thus forming a counterbalance to extemal forces that 
try to shape the model according to all the variations of the 
image feature landscape. 

Before continuing, we must first define the concept of local 
curvature in our discrete model, which is not a trivial matter. 
Strictly speaking, local curvature is zero on the straight edge 
segments in between the vertices, while it is not defined at 
the exact position of a vertex (first-order discontinuity), which 
however happens to be exactly the position where we need 
to define it. 

We found a satisfactory solution to this problem by defining 
local curvature at the position of a vertex to be the difference 
between the directions of the two edge segments that join 
at that location. The edge segment leaving from vertex V ,  is 
represented by a vector d;; its direction is described by the 
unit vector di. According to the definition above, the local 
curvature ci at V,  is described by (see Fig. 3) 

A , .  

(1) 

Defined in this way, local curvature has length (strength), as 
well as direction, and provides a usable and unique measure 
for the angle between two joining edge segments. Moreover, 
the length of our curvature vector depends only on this angle, 
and is not influenced by the lengths of the two joining edge 
segments. 

We will also define locally radial and tangential directions 
at the position of a vertex. For this, we again make use of 

c .  - d.  - d.  
2 - 2 2 - 1 .  

Fig. 4. The local tangential direction 4; at a vertex 1; is defined as the 
normalized sum of d,-l and d, .  The local radial direction e ,  is defined as 
a .rr/2 rotation of 4;. 

the unit vectors di representing the directions of the edge 
segments d;. To define a locally tangential unit vector ti,  we 
use the normalized sum of the unit vectors of two joining 
edge segments (see Fig. 4) 

The unit vector r; in the local radial direction is derived 
from i; by a rotation over 7 ~ / 2  radians 

0 1 -  
r; = [ ] t;. -1 0 (3) 

The vectors and r; now represent a local coordinate 
system at the position of vertex Vi, which will prove useful 
for the calculation of intemal as well as extemal forces. 

Both closed and open models are allowed. If the number 
of vertices equals TZ and the model is closed, the first vertex 
VO and the last vertex Vn-l are connected, so VO has two 
neighbors: Vn-l and VI. If, however, the model is open, VO 
and V,-l are not connected and both have just one neighbor: 
VO only connects to VI, and Vn-l only connects to Vn-2. This 
situation requires special measures for the calculation of the 
local tangential and radial directions ti and i.; as well as the 
curvature vector c;.  At the position of the open ends, we define 
the local tangential direction to be equalJo the direction Of the 
first or the last contour segment: t o  = do and t,-l = dn--2. 
The length of the curvature vector is set to zero for both end 
positions: CO = c,-1 = 0. 

If we describe the local curvature vector ci in terms of the 
local r ,  t-coordinate system, we see that ci is pointing either 
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r, t-coordinates 

Fig. 5. Positive curvature c,-1 points in the same direction as i L - ~ ,  while 
negative curvature c,  points in the opposite direction of i, . 

in exactly the direction of e;, or in the opposite direction. In 
other words, c; is a vector along the local r-axis and its length 
can be described by the dot product (c; . ti). We will make 
use of the fact that, according to this definition, the length c; 
of the curvature vector can be positive as well as negative 

(4) 

See also Fig. 5 for an illustration of positive and negative 
local curvature. 

Now that we have defined local curvature as a one- 
dimensional variable in the local radial direction, we can 
proceed toward defining the intemal forces which should 
act on the model’s vertices and put restrictions on the 
deformation process. In order to get a clear understanding 
of the contribution that intemal forces will make to the 
deformation of the model, we consider a situation in which 
extemal forces are completely absent. If we compare Figs. 2, 
3, and 5, we are tempted to believe that the desired intemal 
forces (Fig. 2) and the curvature vectors (Fig. 3 and 5) are 
very closely related. This is indeed true: both are vectors 
with the same orientation. It would, however, be unwise to 
define the intemal forces as being proportional to the local 
curvature vectors. The reason for this is illustrated in the 
left part of Fig. 6(a). Any simple closed shape would, in 
the absence of extemal forces, be deformed into the shape 
having the minimum overall local curvature, i.e., a circle (or 
rather, because of the discretization, a symmetric polygon). 
Then, however, the deformation process would not stop, but 
continue to move the vertices in the direction of the center 
of the model, as will be clear from Fig. 6(a). During this last 
phase, the model is shrinking while local curvature will not 
change, which means that the intemal forces are not doing 
what they were intended to do: reduce local curvature. The 
model will implode into a single point. 

Miller [6]-[8], [ 111 related the GDM’s intemal constraint 
forces directly to his local curvature measure: the angle 
between joining edges (in 2-D). He therefore faced the above 
shrinking problem, which he managed to bring to a halt 
by introducing a second constraint on the position of a 
vertex with respect to its neighbors. This second constraint 
acts like an elastic force that keeps the distance between 
neighboring vertices between certain limits. Vertices which 
are moving closer together will experience an increasingly 
repelling force that, at some point, will stop the shrinking 

c; = (Ci . t i )?; .  

C 

Fig. 6. 
in Cartesian representation, on the right in local r,  t-coordinates. 

Curvature vectors c ,  for some typical situations; on the left shown 

process. The point where the shrinking process comes to a 
stop depends on the weights that are assigned to the two 
intemal constraint forces. In other words, it is required to 
optimize the balance between the intemal elastic force and 
the intemal curvature minimizing force. This may not always 
be possible in the presence of extemal forces, as we will 
show in the next section. In order to avoid the introduction 
of the second-rather artificial-constraint and the problems 
entailed by it, we have sought an altemative definition of the 
intemal curvature reducing force. Our requirement was that 
local curvature should be reduced without affecting parts of 
the contour with constant curvature. 

Fig. 6 shows, besides the already introduced symmetric 
polygon of (a), some typical shapes which may occur in a 
discrete contour model, and which we will use to illustrate 
our solution to the shrinking problem. Fig. 6(b) shows a tum 
in the direction of a contour over T radians and Fig. 6(c) a 
part of a contour with alternating curvature direction. 

The problem of the shape of Fig. 6(a) has been discussed 
above; in the absence of extemal forces, the polygon will 
implode if the internal forces are taken to be proportional to 
the local curvature. 

The shape of Fig. 6(b) presents a similar problem. It forms 
an extended part of a contour. If we would apply a force 
proportional to local curvature to the vertices, the closed end 
of the contour would become shorter, as shown in the figure. 
However, as with the shrinking of the shape of Fig. 6(a), this 
would not actually reduce local curvature, but only displace 
the curved region. The shape of Fig. 6(c) does not pose a 
problem; we include this shape because it represents a typical 
situation in which local curvature reduction may be required. 
Any solution to the shrinking problem should still perform 
well on the shape of Fig. 6(c). 

On the right side of Fig. 6, the same three shapes are shown, 
but now in local r, t-coordinates. Examination of the curvature 
vectors in this coordinate system, combined with our intention 
to derive from these vectors the intemal forces that would meet 
our above-stated criteria, led us to a simple solution. First, 
intemal forces fin,; which act on the vertices V ,  should have 
the same (radial) direction as the curvature vectors. This means 
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r,t-coordinates 

C 

Fig. 7. 
Fig. 6. 

Intemal forces fir,, , as derived from the curvature vectors c ,  of 

that intemal forces can be derived from the curvature vectors 
by modifying only their lengths. Second, in order to reduce 
local curvature without affecting areas of constant curvature, 
the lengths of the intemal force vectors should be zero for 
parts of the contour with constant curvature. Both conditions 
can be met if we consider the sequence ci.r; along the contour 
as a discrete scalar function, dependent on the position i ,  and 
use the convolution of this function with a discrete filter IC; 
as the representation of the sequence of intemal force vector 
lengths fin, i 

( 5 )  

The first condition can be met by using t; as the direction 

(6) 

The second condition is met by choosing appropriate filter 
coefficients for IC; .  If we want the result of convolving a 
sequence of constant values with IC; to be zero, then we must 
define IC; such that it is a symmetric discrete filter with a zero 
frequency component equal to zero. A wide class of filters 
complies with this condition. We have chosen and applied the 
simplest form, which is a uniform filter consisting of three 
nonzero coefficients with the values 

fin,2 = (c; . Pi )  8 k;. 

of fin,; 

f. . - f. . f .  m , z  - In ,% a .  

kz = {.- ,  0, 0, -;, 1, -;, 0, 0, . - }  (7) 

where the value 1 applies to position i and the values -; to 
positions i- 1 and i+ 1 .  

We intend to investigate other possible filters in the future 
because this convolution may provide an interesting way to 
optimize the behavior of the model for specific applications. 
In particular, it may be worthwhile to make IC; adaptive. 

Fig. 7 shows the intemal force vectors for the contour 
shapes of Fig. 6, derived from the curvature vectors according 
to (5)-(7). The left side of the figure shows the intemal 
forces in local r,  t-coordinates; the right side shows the shapes 
and intemal forces in Cartesian coordinates. The constant 
curvature of the shape of Fig. 7(a) has produced intemal forces 
that are zero everywhere, so that the shrinking problem has 

been solved. The 7r radians tum of the shape of Fig. 7(b) 
is deformed in a way that appears more natural. The closed 
end of the contour becomes not only shorter, but also wider, 
which is what we would expect from curvature reduction. The 
altemating curvature of the shape of Fig. 7(c) will still be 
reduced effectively, because the effect of convolution with ki 
on a purely altemating signal comes down to multiplication 
with a constant. 

In consequence, the intemal forces fin,;, as defined by 
(5)-(7), produce the desired deformation effects to our contour 
model, in the absence of any extemal forces. 

The next section will cover the extemal force field and 
present a solution for the vertex clustering problem related 
with it. 

B .  External Forces 

To provide a driving force for the deformation of the 
model, an extemal potential energy distribution is assumed, 
which represents the energy or strength of some kind of 
image feature or combination of image features. The selection 
of appropriate image features for specific applications is an 
important research subject, but not within the scope of this 
paper. In future work, we aim at using the results of the 
investigations into scale space and differential invariants [ 131, 
[ 181, [ 191 to define application-specific image features. In 
this paper, however, we will demonstrate the behavior of the 
model using simple, but effective, image features like the pixel 
or voxel gray value itself and the length of the gray value 
gradient. 

If, for instance, we want the model to follow a maximum 
gradient path through the image, we could use the gradient 
length as an image feature and define an energy distribution 
that is high for large values of this feature. A maximum 
gradient path is then represented by a ridge in this energy 
distribution. The implementation of the deformation process is 
such that it will attempt to pull the vertices into local minima 
of the energy distribution, which is a natural behavior. For the 
model as a whole, this means that it will end up following 
a path of low energy or a valley through the feature energy 
landscape. If we want the model to follow a ridge instead of 
a valley, we can do so by inverting the energy distribution. 
We will call the resulting distribution of potential energy Ei,. 
The force field that will pull an object in the direction of lower 
energy, can be described by the following simple relation: 

If we apply this force to the vertices of our model, and 
consider a situation in which there are no intemal forces, then 
the result will be that, in the end, the contour model connects 
local energy minima, following a valley, through the extemal 
energy distribution. 

However, if we would actually apply the above-described 
force field, we would soon run into a problem which is 
common to all similar methods: the force fim,vc which acts 
on the vertex V,, will, in general, not only have a component 
perpendicular to the local direction of the contour model (lo- 
cally radial component), but also a component along the path 
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of the model (locally tangential component). This tangential 
component may be substantial, or even dominant. If there 
were no restrictions on the curvature of the model (e.g., in 
the absence of intemal forces), then, in the final situation, 
the model would actually pass through the local minima of 
the extemal energy distribution, in which case the force field 
would locally be directed along the path of the contour. The 
result of this locally tangential component is that vertices will 
move along the contour and form clusters in local minima 
of the extemal energy distribution, which is obviously a very 
undesirable effect. 

Let us now get back to the option of introducing an elastic 
force as a second intemal force in order to keep the distance 
between neighboring vertices within limits, assuming that such 
a force could be an effective answer to the clustering problem. 
In this situation, the strength of the elastic force would have 
to be tuned locally to the strength of the extemal force fi,, V, 

at the location of vertex V,. This extemal force varies, not 
only over the area of the image matrix, but also from image 
to image, and it depends on many parameters related to both 
acquisition and processing of the data, like, for instance, the 
feature extraction algorithm that was used. Careful tuning of 
the intemal elastic force is important: If the elastic force is too 
weak, it may lead to shrinking of the model owing to intemal 
curvature forces, or it may lead to clustering of the vertices 
owing to extemal forces. If the elastic force is too strong, it 
may obstruct the deformation process of the model, because, 
during deformation, the vertices must have the freedom to 
move and change the distance to their neighbors. 

We have found experimentally that the needed compromise 
is unaccomplishable. The intemal elastic force cannot be tuned 
locally to the extemal forces fi,, V, and, at the same time, be 
tuned correctly to the intemal forces fin, ,. 

Our solution to the clustering problem is an obvious one and 
also in line with our solution to the shrinking problem, which 
was discussed in the previous section: Vertex displacement 
along the path of the contour model does not make any 
contribution to the deformation of the model, which is what 
this model is all about. Therefore, we will not use the force 
fim, \rz itself, but decompose this force into a locally radial and 
a locally tangential component, and use only the locally radial 
component to drive the vertices of the contour model. 

If we denote the locally radial component of fim,\Jt by 
fim,r,, then its length is given by the dot product of f i , ,~ ,  
and f, 

See also Fig. 8. The locally radial forces f;m,r, and f i n , i  

provide a resulting driving force on the vertices of the contour 
model which is purely devoted to deformation of the model, 
without moving vertices along the path of the contour. 

It is mandatory for a user of dynamic contour modeling 
tools to have control over the contouring process. Firstly, 
only few real-world images lend themselves to fully automatic 
contouring of satisfactory quality; some operator guidance will 
be desirable for most object definition purposes. Secondly, 
the state of minimum energy reached by the model will, in 
general, be but one of a large set of possible local minima, 

T i - I  

Fig. 8. 
is used for deformation of the model. 

Only the locally radial component fir,,, r z  of the external force fi,,,, 1 ,  

and the operator must have the means to push the model out 
of a local minimum into another. In the Snake model, this 
was realized by introducing user defined “volcanos,” “pits,” 
and “anchored springs” [4]. One of the future extensions to 
our contour model will be to offer the user a possibility to 
interactively create and modify a user-defined extemal energy 
distribution E,,,,, which will be added to the calculated image 
feature energy distribution E;, to form the combined extemal 
energy distribution Eex. The user-defined distribution enables 
the operator to create additional ridges and valleys through 
the energy landscape to locally force the model to follow a 
particular path. Once these two extemal energy distributions 
are combined, the situation is completely equivalent to the one 
above, and calculation of the resulting extemal force f,,, r t ,  

acting on a vertex V ,  of the model becomes 

After thus having defined the intemal and extemal model 
forces, we are well equipped to describe the dynamics of 
the deformation process. This will be the subject of the next 
section. 

111. DEFORMATION AND RESAMPLING 

The distance between a vertex and its neighbors determines 
the resolution of the contour model: details of the extemal 
image feature energy distribution which are small enough may 
pass through the spaces between the vertices without having a 
significant influence on the final shape of the model. Because 
of the deformation of the model, the vertex to vertex distance 
will change constantly. This may result in local variation as 
well as in global changes in the resolution of the model. Both 
are undesirable, but slight local variation in the resolution 
is unavoidable because a deformation process can only be 
possible if the vertices have the freedom to move with respect 
to their neighbors. What we can do, however, is keep this 
variation between certain limits by periodically resampling the 
contour model along its path. In local r ,  t-coordinates, this 
translates into a resampling along the t-axis. 
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The actual deformation process will be discussed in the 
next subsection, followed by a description of the resampling 
process. 

A .  Deformation 

nation of extemal and intemal forces 
The total force fi acting on a vertex is a weighted combi- 

fi = wexfex, rt + winfin, i .  (13) 

The weighting factors we, and w i n  may have default values 
for each application but allow modification by the operator. 
Upon emphasizing extemal forces, one will make the model 
follow the extracted image features more precisely, while 
putting emphasis on intemal forces will smooth out the path 
of the contour. As a result of the forces that act on a vertex 
V,, this vertex will start to move and change its position pi. 
This position vector, together with the vertex velocity and 
acceleration vectors v, and ai, describe the dynamic state of 
a vertex. A vertex will not stop moving until both vi = 0 and 
ai = 0. The deformation process of the model as a whole is 
not completed before the condition vi = ai = 0 is met by 
all its vertices. 

It may, in principle, be a very long time before the contour 
model comes to a rest, or the model may even remain 
oscillating between two states which both represent a local 
energy minimum. We therefore added a third component to 
the force that is applied to a vertex V,, viz., a damping force 
fdamp, proportional to the vertex velocity vi 

(14) 
fdamp, i = Wdampvi .  (15) 

fi = wexfex, rt + winfin, i + fdamp, z 

The weighting factor wdamp is negative and determines 
the amount of damping. Even a small damping factor wdamp 

suffices to ensure stability of the deformation process. 
While the other weighting factors we, and win are dimen- 

sionless, Wdamp is not. We chose to mimic the damping which 
is experienced by a moving particle in a fluid or a gas. In this 
case, the damping force is proportional to the velocity of the 
particle and points in opposite direction. This damping force 
is expressed in the formula of Stokes: f = 67rrqv. The factor 
wdamp can be written as wdamp = cq for a specific particle in 
which c is a constant and q the viscosity coefficient of the fluid 
or the gas. The constant c depends on the radius of the particle 
and has the dimension [m]; the coefficient q has the dimension 
[kg/(m . s)]. The dimension of Wdamp therefore is [kg/s]. It 
follows that fdamp has the dimension of a force [(kg . m)/s2]. 

The actual deformation process is implemented as a so- 
called numerical time integration process in which the com- 
plete state of the contour model is calculated at a sequence 
of discrete positions in time. A similar method was described 
by Terzopoulos 191. If we use the argument t to describe the 
state of the model at a certain point t in time, and t + At 
for the situation at a time At later, then the deformation 
process during the incremental time At can be described by 
the following difference scheme: 

p i ( t  + At) = p i @ )  + v i ( t ) A t  (16) 

(17) 

(18) 

vi(t + At) =vi(t) + a;(t)At 
ai(t + At) = - 1 fi(t + at). 

mi 

The value of f i ( t  + At) in (18) is calculated from (14). 
The value mi in (18) would, in a physical context, represent 
the “mass” of vertex V,. We do not, however, make use of the 
possibility to assign different mass values to the vertices of the 
model in our present implementation. By assuming the same 
mass for all vertices, the factor l/mi reduces to a constant 
scaling factor. 

An option, available for open contours, is a growing process 
which adds vertices to one or both of the open ends of 
the contour model. We integrated this growing process with 
the deformation of the model, which resulted in an efficient 
tracking method. Vertices which are added are positioned by 
extrapolating in the direction of the last (or first) edge segment, 
which is, at the same time, continuously being repositioned 
by the deformation process. We also added an automatic 
closing option, such that both ends of an open contour are 
automatically connected when the distance between them 
becomes smaller than a certain threshold. In Section IV, we 
will show examples of open contours that “grow” around an 
edge in the image, close themselves, and from there on behave 
like any other closed contour. 

B .  Resampling 
In the prototype implementation that we developed, the user 

can interactively control a parameter Ides, the desired length 
for the model’s edge segments. In this way, the resolution 
of the model can be chosen. From Ides, two other values lmin 
and I,,, are derived, representing the minimum and maximum 
distance which is allowed between neighboring vertices. 

The resampling step is implemented as a two-pass process: 
The first pass checks along the entire contour if any segment 
length has become shorter than the minimum length Imin. If 
this is the case, this edge segment is removed from the model 
by replacing the two vertices on both ends of this segment by 
one single vertex at a position exactly in between the replaced 
vertices. This is illustrated in Fig. 9(a). The second pass checks 
again along the entire contour, but now for segments with a 
length larger than the maximum length I,,,. Such an edge 
segment is divided into two shorter ones of equal length, as 
illustrated in Fig. 9(b). 

The values of lmin and I,,, are derived from the user- 
defined parameter Ides. The relation between lmin and I,,, is 
constrained by not admitting an oscillatory behavior, in which 
vertices are repeatedly removed in one resampling action and 
inserted again in the next. This leads to the requirement that 
I,,, > 2Z,in. In our prototype implementation, we used the 
following relationship for Imin, I,,,, and Ides, with satisfactory 
result: 

When a vertex is placed in the contour model, it is also 
assigned a velocity v i  and acceleration ai which are obtained 
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IV. RESULTS 
We developed a prototype implementation of the described 

method and applied our contour model to computer-generated 
test images as well as to clinical images. In this section, we 
will present some of the results. 

The first example in Fig. 10 shows the results of applying 
the contour model to a noisy synthetic image (256 x 256 
pixels; eight bits). The shape of a cross, formed by two 
rectangles which intersect at a right angle, is visible through 
the noise in the image in Fig. lO(a). The average gray value in 
the background is 130, while in the "legs" of the cross it is 160, 
and in the center of the cross 190. The standard deviation of 
the noise is 32. Fig. 10(b) gives the histogram of gray values 
for the pixels inside the elliptical region in Fig. 10(a). It will 
be clear from this histogram that simple thresholding can not 
be used to separate the cross from the background. 

Finding some approximation of the contour of both rect- 
angles at the same time (the complete cross) may still be 
possible by using conventional approaches like blurring and 
thresholding combined with morphological operations. It will, 
however, require insight in the situation and the applied 
techniques as well as significant guidance from the operator. 
Finding the contour of just one of the rectangles is more 
difficult because of the change in gray value where both 
rectangles cross each other. We will show that our contour 
model can be used to extract the contour of one of the 
rectangles in different user friendly ways and with a minimum 
of interaction. 

Fig. 1O(c) shows the extemal energy distribution which will 
be used to guide the contour model. In this case, it represents 
the reciprocal magnitude of the gray value gradient after 
applying a Gaussian blurring with o = 5 (pixel units). The 
contour model, which will attempt to follow the valleys in 

(9) (h) 0 )  

Fig. 10. (a) Computer-generated image of cross, with relatively high noise 
level and elliptical ROI for analysis of pixel values. (b) Histogram of gray 
values of the pixels inside the elliptical ROI. (c) External energy distribution 
for defining contours along edges. (d) Initial contour as drawn by the operator. 
(e) Resulting contour after deformation and resampling of the initial contour 
in (d), shown on image. (f) Resulting contour shown on external energy 
distribution. (g) Initial open contour as drawn by the operator. (h) Open 
contour model tracking along max gradient path. (i) Open contour model 
tracking along max gradient path. 

the external energy distribution, will thus be pulled toward 
maximum gradient values. 

In Fig. 10(d), we see an initial contour as it was drawn 
in the image by an operator. It consists of only four points 
which were deliberately positioned very roughly around the 
rectangular shape. Fig. 10(e) gives the final result of the 
deformation and resampling process of the contour model. The 
specified resolution of the model was, in this case, ides = 4 
(pixel units); the weighting factors we,, win, and Wdamp were 
all equal to 0.5. In Fig. 10(f), it is shown that the contour 
model has settled itself along a path of local minima in the 
extemal energy distribution as was intended. 

A second way of applying our model is illustrated in 
Fig. lO(g)-(i). An open contour is now used for initial contour 
as shown in Fig. lO(g). User interaction is now limited to 
positioning only two points roughly near the desired path 
of the contour. This open contour model can automatically 
start growing (clockwise direction), while, at the same time, 
it will be resampled and deformed, finding its path without 
any further user intervention as described in Section 111-A. In 
Fig. 10(h), we see that it has rounded the first two comers. 
In Fig. 1O(i), it has passed the crossing and rounded the next 
comers. The growing process will come to a stop when the 
two ends of the contour get closer than the distance l,,,, as 
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(8) (h) ( 9  

Fig. 11. (a) CT image through the knee showing cross-section through lower 
part of femur. (b) Extemal energy distribution for defining contours along 
edges. (c) Initial contour for defining the bone edge, as drawn by the operator. 
(d) Resulting contour after deformation and resampling of the initial contour 
in (c), shown on image. (e) Resulting contour shown on extemal energy 
distribution. (f) Initial open contour as drawn by the operator. (g) Open 
contour model tracking along max gradient path. (h) Open contour model 
tracking along max gradient path. (i) Open contour model tracking along max 
gradient path. 

described in the previous section. The model will, from then 
on, behave as a closed contour and come to a rest just like in 
the process shown in the frames of Fig. 10(d)-(f). 

The next example in Fig. 11 concerns a clinical image. 
Fig. 1 l(a) is a CT scan (512 x 512 pixels; 12 b) representing 
a slice through the knee, showing a cross-section through 
the lower part of the femur, of which we want to extract 
the contour. The segmentation problem in this case is that 
the gray values locally drop to very low values inside the 
body of the bone, making it impossible to use thresholding 
without creating a large number of undesired contours. We 
will demonstrate the performance of our contour model using 
similar approaches, as in the previous example. 

The extemal energy distribution which we will use is shown 
in Fig. ll(b): the reciprocal magnitude of the gray value 
gradient after blurring with (T = 3. The variation along the 
edge of the bone shows differences in “edge strength” which 
are more severe than in the previous example: the edge almost 
disappears in the lower right part of the image. Also, there 
are many other edges visible, some quite close to the one 
for which we are looking. While this situation requires some 
care in drawing the initial contour, just a few points suffice 
as shown in Fig. ll(c). 

The result after deformation and resampling is presented in 
Fig. l l (d)  on the pixel gray values, and in Fig. l l(e) on the 
extemal energy distribution. It can be seen from Fig. 1 l(e) 
that the contour correctly follows the intended edge, even in 
the areas where edges are weak and in the areas where other 
edges come close to the path. The resolution was ides = 4, 
and the force balance was we, = w;, = wdamp = 0.5, Just as 
in the previous example. 

Fig. 1 l(f)-(i) illustrates the application of an open contour 
model to this image. Starting from the initial contour in 
Fig. 1 l(f), it grows again in a clockwise direction, tracking a 
path of local minima through the external energy distribution. 
Fig. ll(g)-(i) shows different stages in this process. 

Fig. 12 shows an example of a typical intravascular ul- 
trasound image. This image represents a digitized (2.56 x 
256 pixels; eight-bit) cross-section through a blood vessel, 
scanned by a full 2~ radians rotation of the transducer which 
is mounted on the tip of a catheter. 

A number of more or less elliptical shapes are visible in the 
image, representing the layered structure of the vessel wall. 
Some of these elliptical shapes show up as bright ridges, while 
others show up as dark valleys. Both types are interesting from 
a clinical point of view. The area inside the vessel is partly 
blocked. The lumen (remaining open area) is visible as a dark 
region. Describing the edge of this open area with our model 
is also a meaningful application. 

There are a number of reasons why it would be very 
difficult, if at all possible, to extract the desired contours from 
this image using conventional (local) edge extraction methods. 
As is usual in ultrasound images, the signal-to-noise ratio 
is very low and large parts of the image are obscured by 
shadows. An additional difficulty is caused by the presence 
of the catheter (in the lower part of the lumen, touching the 
vessel wall) and the overlaid artificial tickmarks for distance 
measurement in the horizontal and vertical directions. We will 
show that our contour model succeeds well in defining the 
contours which describe the bright elliptical shape in the vessel 
wall, as well as the edge of the open area inside the vessel. 

First, we will define a contour describing the edge of the 
lumen. The obvious choice so as to position the desired path 
of this contour between dark and bright image regions is, 
as in the previous examples, to make it follow a path of 
maximum gray value gradient. As the contour model will 
follow valleys through the external energy distribution, the 
reciprocal length of the blurred (Gaussian, (T = 3) gray value 
gradient is the appropriate choice for this distribution. The 
resulting external energy is shown in Fig. 12(b). Parts of the 
edge of the open area now show up as dark valleys, which do 
not, however, form a closed shape. The initial model created 
by the operator, using only five vertex positions, is shown 
in Fig. 12(c) and the result after deformation is presented 
in Fig. 12(d), together with the original gray values; and in 
Fig. 12(e) with the extemal energy distribution. 

Fig. 12(f)-(h) demonstrates that, even in this difficult case, 
it is possible to further reduce the required user interaction by 
applying an open contour to automatically track the desired 
edge. For defining this edge, we used the following parameter 
settings: ides = 8 and again wex = w;, = wdanlp = 0.5. 
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the resulting shape of the model is presented in Fig. 12(k) 
together with the original gray values, and in Fig. 12(1) with 
the extemal energy distribution. The contour model follows 
the gray value ridge in a natural way. In those areas where the 
extemal energy is not strong enough or even absent, the shape 
of the model is mainly determined by intemal forces, bridging 
the gaps in an equally natural way. The parameter settings 
were the same as for the definition of the edge of the lumen. 

The next example illustrates the definition of an open 

(k) (1) 

Fig. 12. (a) Intravascular ultrasound image showing cross-section through 
vessel. (b) External energy distribution for defining contours along edges. (c) 
Initial contour for defining the edge of the lumen, as drawn by the operator. 
(d) Resulting contour after deformation and resampling of the initial contour 
in (c), shown on image. (e) Resulting contour shown on external energy 
distribution. (f) Initial open contour as drawn by the operator. (g) Open contour 
model tracking along max gradient path. (h) Open contour model tracking 
along max gradient path. (i) External energy distribution for defining contours 
along ridges. fj)  Initial contour for defining the shape of the relatively bright 
elliptical structure in the vessel wall, as drawn by the operator. (k) Resulting 
contour after deformation and resampling of the initial contour in fj). shown 
on image. ( I )  Resulting contour shown on external energy distribution. 

Next, we will define a contour through the bright elliptical 
shape in the vessel wall. As this shape forms a kind of ridge 
through the image, and the model will try to follow valleys, 
we simply can use the inverse of the blurred (Gaussian, o = 3) 
pixel gray value as the extemal energy distribution; the result 

contour following a valley in the image. It concems an X- 
ray image (512 x 512 pixels; 10 b) for vascular application in 
which the main arteries in abdomen and legs are visualized by 
injection of a contrast medium so that these vessels show up in 
the image as dark valleys. The image is displayed in Fig. 13(a), 
together with the initial contour as defined by the operator. In 
this case, our goal is to follow the main arteries using an 
open contour model. As the vessels are already visible as dark 
valleys, a suitable extemal energy distribution is obtained by 
only blurring the image with o = 5, as shown in Fig. 13(b). 
Fig. 13(c) and (d) shows different stages in the resulting open 
contour model. The parameter settings were in this case: ides = 

The last clinical example we want to show concems an MR 
image of the head (256 x 256 pixels; eight bits), shown in 
Fig. 14(a). This image represents a slice through the head at 
eye level. The dark area just left of the center is a tumor, 
which is partly located in the brain tissue (gray) and partly 
in the bony structures of the skull base (black area to the 
left of the tumor). This is a particularly difficult case for 
segmentation because different contours may be interesting 
from a clinical point of view. We will show that, also in this 
situation, a dynamic contour model like ours may be useful, by 
demonstrating that different meaningful results can be obtained 

10 and We, = Win = Wdamp = 0.5. 
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contour model does not have any knowledge of the pathology, 
it will not have a preference for any particular path. The expert 
knowledge of the operator is required to accurately position 
the initial contour. Visual feedback can be used to decide 
whether the result is satisfying; if this is not the case, the 
resulting contour can be adjusted, after which the deformation 
process is restarted. In the examples shown, no adjustment has 
been applied. The initial contours yielded the results without 

\-I \ -I  

interference from the operator, using the specified parameter 
settings. In relation with the above, it is useful to briefly 
discuss the speed of the deformation process. There are two 
important factors which determine the time it takes for the 
contour model to come to a rest. One obvious factor is the 
number of vertices in the model, determined by the resolution, 
which can be set by the operator. Another factor is the number 
of steps it takes to reach the final shape starting from the 
initial outline, which depends on the difference between initial 

(0 
Fig. 14. (a) MR image through the head showing tumor left of center. (b) 
Extemal energy distribution for defining contours along edges. (c) First initial 
contour as drawn by the operator. (d) Resulting contour after deformation 
and resampling of the initial contour in (c), shown on image. (e) Different 
initial contour as drawn by the operator. (0 Different resulting contour after 
deformation and resampling of the initial contour in (e), shown on image. 

in a user friendly and predictable way by simply defining 
different initial contours. 

The extemal energy distribution is calculated from the gra- 
dient magnitude as explained before, and shown in Fig. 14(b). 
In this case, we used 0 = 1 for blurring because the resolution 
of the image is already relatively low and we want to avoid 
blurring the edges too much. There are obviously different 
edges which can be used to position the contour model in the 
area of the tumor. By being reasonably careful in positioning 
the initial contour, we can control what the final shape of the 
contour will be. 

If we want to delineate the part of the tumor which shows 
up in the image as two more or less circular connected dark 
areas, we can use an initial contour like the one in Fig. 14(c) 
which produces the result as shown in Fig. 14(d). 

If, however, we are interested in a larger area, and want 
to include the bright area on the left side of the tumor and 
the dark-gray area on the right, the simple initial contour in 
Fig. 14(e) will lead to the desired result as shown in Fig. 14(f). 

For both results, we used the parameter settings: ides = 4 
and We, = W;, = Wdamp = 0.5. 

The previous example may raise the question of how 
accurately one has to draw the initial contour to get the desired 
and clinically meaningful result. The answer to this question 
greatly depends on the actual situation. In the example of 
Fig. 14, there are different possible paths close together. As the 

and final contour. The operator has a large influence here, as 
he can decide to put more or less effort in drawing initial 
contours. Accordingly, general statements about the speed are 
not very meaningful. We can say, however, that in all the cases 
demonstrated here, the deformation process took a fraction of 
a second on a SUN-IPX workstation. The number of vertices 
was, in all cases, less than 100. 

We next discuss the sensitivity of the final result for the 
shape of the initial contour. In other words, how reproducible 
is the result when starting from different initial contours? 

The cross image of Fig. 10 is used again to demonstrate that 
the shape of the initial contour generally has little influence on 
the result. Fig. 15 outlines our experiments. Frames (a), (d), 
and (8) of Fig. 15 show three quite different initial contours. 
The results after deformation are shown in Fig. 15(c), (f), 
and (i), intermediate shapes in Fig. 15(b), (e), and (h). It 
can be seen that the results do not depend strongly on the 
initial contour location, which is actually one of the reasons 
for using a deformable contour model opposed to drawing 
contours manually. The discrete nature of the model leads to 
a certain variation in the positions of the individual vertices, 
when the deformation process is started from different initial 
positions. However, the variations in the path of the contour 
are small as compared with the resolution of the contour. All 
parameter settings were the same as specified before for the 
results of Fig. 10. 

As can be seen from the examples, the operator-defined 
initial model may have a very low resolution without jeop- 
ardizing the contour finding process. The initial resolution 
is automatically and quickly increased by the resampling 
mechanism, which is integrated in the deformation process, 
until it is on the level that was specified via the parameter 
Ides. This will be realized after only a few deformation steps, 
and from there on the resampling process will keep the 
resolution at the required level. Consequently, the amount of 
user interaction in defining an initial model can be very small. 
In a number of well-defined applications, it seems feasible to 
generate the initial contour without user interaction, thereby 
making the entire method automatic and reproducible. 

At any point the deformation process can be stopped, which 
offers the user the opportunity to change any parameter, after 
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(g) (h) (i) 

Fig. 15. (a) Initial contour on synthetic cross image. (b) Intermediate result 
of deformation and resampling of the initial contour in (a). (c) Final result of 
deformation and resampling of the contour in (a). (d) Different initial contour 
on same image. (e) Intermediate result of deformation and resampling of 
the initial contour in (d). (f) Final result of deformation and resampling of 
the contour in (d). (g) Much different initial contour on same image. (h) 
Intermediate result of deformation and resampling of the initial contour in 
(g). (i) Final result of deformation and resampling of the contour in (g). 

which the deformation can be resumed. This option was not 
used in the examples discussed. 

Optimization of the weight factors for a particular applica- 
tion can be done interactively, by judging the result visually. 
Our experience shows that, after having determined the desired 
parameter settings, these settings can be applied to similar 
situations (same modality, same acquisition parameters, same 
goal) without modification, which offers the possibility to build 
a collection of typical parameter settings from which a user 
could make a choice in frequently occurring situations. 

Setting the parameters will, in most cases, be restricted to 
setting 0, the width of the blurring function, which deter- 
mines the scale of the image, and setting Ides, the desired 
distance between vertices which determines the resolution of 
the contour model. The force balance, determined by wex, 
win, and Wdamp, was the same for all the discussed examples. 
Although the images which we used were quite different, this 
was possible because of a constant scaling which we applied to 
the calculated external energy distribution such that minimum 
and maximum values were equal in all cases. 

V. CONCLUDING REMARKS 
We have developed a discrete contour model that com- 

bines conceptual and computational simplicity with variable 

resolution and adjustable behavior. It is based on a simple 
structure and its deformation is controlled by basic physical 
rules. It incorporates elegant and efficient solutions to the 
shrinking and clustering problems from which active model 
approaches suffer. The method is easy to use because of 
the small number of parameters that control the deformation 
process. The examples show that our discrete contour model 
has potential in the area of contour definition for a large variety 
of clinical applications. 

As compared with conventional contour extraction methods, 
the strong argument in favor of the method presented here is 
that it handles and processes a contour as one topologically 
consistent object, yet the deformation process which controls 
the shape of the model is based on local operations on the 
vertices of the model. 

As compared with manual contour definition methods, the 
advantage of the present approach is the minimum of user 
interaction which is required, and the reproducibility of the 
result. 

A sensitive point of our method is the dependency of the 
final result on the image features that are used to drive the 
contour deformation. The method relies on the assumption 
that some process exists for the extraction of adequate image 
features in a particular applicational context. Extraction of 
useful image features is therefore an important subject for 
further investigation. Its importance for the success of our 
contour model should not be overestimated though, because 
simple image features like gray value and gray value gradient 
were found to be quite appropriate in a variety of situations. 

Future research will go in the direction of selection of 
appropriate image features for specific applications, adaptivity 
of the model to local image context, and extension of the 
method to 3-D images. 
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